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PoLiTe project

Origin: EBSpat a companion package offering simulation and
estimation tools for the nearest-neighbour point processes.

Now: EBSpatCGAL (in fact, better called CGALSpat) is a complete
code rewriting of EBSpat using

1 the R package Rcpp as a replacement of my R package CqlsRCom
based on the C API of R .

2 the very complete C++ library CGAL (Computational Geometry
Algorithms Library ) as a replacement of the code developed first in his
PhD dissertion by Etienne Bertin.

Next: R package PoLiTe (Point and Line Tesselations) as a merging
of EBSpatCGAL and LiTe (with Kiên Kiêu as main developer).
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Delaunay 2D

> del2 <- Delaunay()
> insert(del2,x=runif(100),y=runif(100),m=rUnif(100,supp=c(1,2)))
> vertices(del2,"all")

x y m
1 0.37379245 0.585985234 2
2 0.31904557 0.680846427 1
3 0.25201223 0.151456890 1
4 0.38706632 0.870159549 1
5 0.76450500 0.478038448 1
...

...
96 0.53653834 0.445746042 1
97 0.94627073 0.682455346 1
98 0.19538909 0.024197013 1
99 0.31864697 0.408334029 1
100 0.03392521 0.973496550 1
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Delaunay 2D

> # default Delaunay plot without marks consideration
> plot(del2)
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Delaunay 2D

> # default Delaunay plot with marks
> plot(del2,col=m)
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Delaunay 2D

> # default Voronoi plot with marks
> plot(del2,"vor",col=m)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 8 / 42



Delaunay 2D

> # user-defined scene
> sc <- Scene(graph=del2)
> sc %<<% window2d(xlab="x",ylab="y",main="User-defined plot!")
> sc %<<% lines(graph) %<<% points(graph,col=m) %<<% lines(graph,"vor")
> plot(sc)
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Delaunay 2D

> # reuse of the previous scene
> del2bis <- Delaunay()
> insert(del2bis,x=runif(n<-20),y=runif(n),m=rUnif(n,supp=c(1,2)))
> # same scene plotted with del2bis
> plot(sc,graph=del2bis)
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Delaunay 3D

> del3 <- Delaunay(3)
> insert(del3,
+ x=runif(100),y=runif(100),
+ z=runif(100),m=rUnif(100,supp=c(1,2))
+ )
> vertices(del3,"all")

x y z m
1 0.9961741269 0.775198824 0.86488224 2
2 0.0520305042 0.399626697 0.34540173 2
3 0.2620854089 0.998486478 0.80300503 1
4 0.8135003112 0.149564696 0.95499060 1
5 0.0955842913 0.673535225 0.50800383 1
...

...
96 0.6507950500 0.109926516 0.08267638 1
97 0.6346332736 0.045987471 0.26163885 2
98 0.1535509252 0.050600111 0.20804355 2
99 0.8973158922 0.446122207 0.78324674 2
100 0.3027747020 0.270465934 0.73376692 2
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Delaunay 3D

> plot(del3,radius=0.01)
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Delaunay 3D

> plot(del3,radius=0.01)

R. (FIGAL) Playing with EBSpatCGAL 12 / 42



Delaunay 3D (plot with mark)

> plot(del3,col=m,radius=0.01)
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Delaunay 3D (plot with mark)
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Regular graph 2D

> reg2 <- Regular()
> insert(reg2,x=runif(100),y=runif(100),w=runif(100))
> vertices(reg2)

[,1] [,2]
[1,] 0.307228523 0.59749540
[2,] 0.932679536 0.94436279
[3,] 0.850657211 0.12352350
[4,] 0.730368539 0.55508497
[5,] 0.416309413 0.97319916
...

...
[24,] 0.554761716 0.01080638
[25,] 0.995206009 0.43567380
[26,] 0.273091584 0.98411324
[27,] 0.006656302 0.79359428
[28,] 0.875257040 0.29055158
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Regular graph 2D

> sc <- Scene()
> sc %<<% window2d(xlab="x",ylab="y",main="Regular and dual graphs")
> sc %<<% lines(graph) %<<% points(graph) %<<% lines(graph,"vor")
> plot(sc,graph=reg2)
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Regular graph 3D

> reg3 <- Regular(3)
> insert(reg3,
+ x=runif(100),y=runif(100),
+ z=runif(100),w=runif(100)
+ )
> vertices(reg3)

[,1] [,2] [,3]
[1,] 0.66739553 0.9386865757 0.06735985
[2,] 0.08513267 0.1697152695 0.86458024
[3,] 0.92423853 0.0159255203 0.77415013
[4,] 0.98499313 0.0002473921 0.66801125
[5,] 0.04380360 0.1667674046 0.38254712
...

...
[28,] 0.44919900 0.1946863390 0.94983455
[29,] 0.06152015 0.0677579972 0.73685371
[30,] 0.04773288 0.7621858553 0.54797599
[31,] 0.87561551 0.9772679964 0.94096146
[32,] 0.72143524 0.3870179157 0.47274896
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Regular graph 3D

> plot(sc3,gr=reg3)
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Regular graph 3D
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Scene with many actors

> del2 <- Delaunay();del2bis<-Delaunay()
> insert(del2,x=runif(n<-20),y=runif(n))
> insert(del2bis,x=runif(n,1,2),y=runif(n,1,2))
> sc2 <- Scene(gr=del2,gr2=del2bis)
> sc2 %<<% window2d(c(0,2),c(0,2),xlab="",ylab="")
> sc2 %<<% lines(gr,col="blue") %<<% points(gr,col="blue")
> sc2 %<<% lines(gr2,col="red") %<<% points(gr2,col="red");plot(sc2)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 18 / 42



Scene with many colors

> del2 <- Delaunay()
> insert(del2,x=runif(n<-300,-350,350),y=runif(n,-350,350))
> sc2g <- Scene(gr=del2) %<<% window2d(c(-350,350),c(-350,350))
> sc2g %<<% lines(gr,when=40<length & length <= 80) %<<%
+ lines(gr,col="red",lwd=2,when= length <= 40) %<<%
+ lines(gr,col="violet",lty=2,lwd=2,when=80<length) %<<%
+ points(gr);plot(sc2g)
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Simulation 2D

> # Delaunay
> del2 <- Delaunay();del2bis <- Delaunay()
> # Gibbs simulation
> gd2 <- SimGibbs(
+ del2 ∼ 2 + Del2(th[1]*(l<=20)+th[2]*(20<l & l<=80),th=c(2,4)),
+ domain=Domain(c(-350,-350),c(350,350))
+ )
> # marked one
> del2m <- Delaunay()
> gd2m <- SimGibbs(
+ del2m ∼ 2 + Del2(th[1]*(l<=20) + th[2]*(20<l & l<=80)
+ * abs(v[[1]]$m-v[[2]]$m), th=c(2,4))| m ∼ Unif(supp=c(1,2))
+ )
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Simulation 2D

> # run the simulator and plot the resulted Delaunay graph
> run(gd2);plot(del2)
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Simulation 2D

> # one can run the simulator with another Delaunay graph
> run(gd2,current=del2bis);plot(del2bis)
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Simulation 2D

> # run the simulator with the marked Delaunay graph
> run(gd2m);plot(del2m,col=m)
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Simulation 2D

> # inside domain
> domIn <- Domain(c(-250,-250),c(250,250))
> #take a boundary of 1
> del2m1 <- Delaunay()
> insert(del2m1,x=runif(n<-500,-350,350),y=runif(n,-350,350),m=1)
> delete(del2m1,inside=domIn)
> #take a boundary of 2
> del2m2 <- Delaunay()
> insert(del2m2,x=runif(n<-500,-350,350),y=runif(n,-350,350),m=2)
> delete(del2m2,inside=domIn)
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Simulation 2D

> plot(del2m1,col=m)
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Simulation 2D

> run(gd2m,current=del2m1,domain=domIn);plot(del2m1,col=m)
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Simulation 2D

> plot(del2m2,col=m)
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Simulation 2D

> run(gd2m,current=del2m2,domain=domIn);plot(del2m2,col=m)
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Simulation 3D (Yes! First time!)

> # Delaunay
> del3 <- Delaunay(3)
> insert(del3,matrix(runif(300,-350,350),ncol=3))
> # Gibbs simulation
> gd3 <- SimGibbs(
+ del3 ∼ 14 + Del2(th[1]*(l<=20)+th[2]*(20<l & l<=80),th=c(-2,10)),
+ domain=Domain(c(-350,-350,-350),c(350,350,350))
+ )
> run(gd3)
> # scene 3D
> (sc3 <- Scene()) %<<%
+ window3d(gd3,windowRect=c(0,0,800,800)) %<<%
+ points(gr,col="violet",radius=5) %<<%
+ lines(gr,col="red",lwd=5,when= length <= 20) %<<%
+ lines(gr,lwd=5,col="green",when=20<length & length <= 80) %<<%
+ lines(gr,col="blue",when=80<length)
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Simulation 3D

> plot(sc3,gr=del3)
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Simulation 3D

> plot(sc3,gr=del3)
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Plan

1 Motivation

2 Plot and Scene

3 Simulation of Delaunay Gibbs point process

4 Innovations and Residuals

5 Estimation
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Innovations and Residuals

GNZ equation: E
(
h (0,Φ; θ) e−V (0|Φ;θ?)

)
= E (h (0,Φ \ 0; θ))

h−innovations:∫
Λ
h (x , ϕ; θ?) e−V (x |ϕ;θ?)dx −

∑
x∈ϕΛ

h (x , ϕ \ x ; θ?)

h−residuals:∫
Λ
h
(
x , ϕ; θ̂

)
e−V (x |ϕ;θ̂)dx −

∑
x∈ϕΛ

h
(
x , ϕ \ x ; θ̂

)
inverse h−residuals:∫

Λ
h
(
x , ϕ; θ̂

)
dx −

∑
x∈ϕΛ

h
(
x , ϕ \ x ; θ̂

)
eV (x |ϕ\x ;θ̂)
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GNZ Cache

> gnz <- GNZCache(
+ del2∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)) ,
+ 1,del2(l<=20), del2(20<l & l<=80),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250))
+ )
> run(gnz,Single=2,Th=c(2,4))
Please be patient: update of caches -> done!
$first
[1] 0.0003564326 0.0005583502 -0.0001283583
$second
[1] 0.000292 0.000380 -0.000028
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Innovations

> res <- Resid(
+ del2∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)) ,
+ 1,del2(l<=20), del2(20<l & l<=80),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250))
+ )
> run(res,Single=2,Th=c(2,4))
Please be patient: update of caches -> done!
[1] 6.023250e-05 1.046913e-04 -3.768942e-05
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Innovations

> resid <- Resid(
+ del2∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)) ,
+ 1,del2(l<=20), del2(20<l & l<=80),
+ all2(range=100|l<=20),
+ all2(range=100|20<l & l<80),
+ del3(ta),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250))
+ )
> run(resid,Single=2,Th=c(2,4))
Please be patient: update of caches -> done!
[1] 4.076217e-05 8.713605e-05 -2.409239e-05 1.092030e-04
[5] 3.228932e-04 -1.649223e-02
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Plan

1 Motivation

2 Plot and Scene

3 Simulation of Delaunay Gibbs point process

4 Innovations and Residuals
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Pseudo-Likelihood 2D
> pseudo <- Pseudo(del2∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250)),
+ expo=TRUE
+ )
> run(pseudo,Single=0,Th=c(0,0))
Please be patient: update of caches -> done!
$par
Single Th1 Th2

1.543463 2.364175 3.864422
$value
[1] 0.001532144
$counts
function gradient

1 1
$convergence
[1] 0
$message
NULL
$Single
[1] 1.543463
[[2]]
[[2]]$Th
[1] 2.364175 3.864422
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Pseudo-Likelihood 3D
> pseudo3 <- Pseudo(del3∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)),
+ runs=10000L,
+ domain=Domain(c(-250,-250,-250),c(250,250,250)),
+ expo=TRUE
+ )
>
NULL
> run(pseudo3,Single=0,Th=c(0,0))
Please be patient: update of caches -> done!
$par

Single Th1 Th2
13.992761 -1.465786 11.862158
$value
[1] 5.874762e-06
$counts
function gradient

1 1
$convergence
[1] 0
$message
NULL
$Single
[1] 13.99276
[[2]]
[[2]]$Th
[1] -1.465786 11.862158R. (FIGAL) Playing with EBSpatCGAL 39 / 42



Takacs-Fiksel 2D (inverse)

> tkinv <- TKInverse(del2∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250))
+ )
> run(tkinv,Single=0,Th=c(0,0))
Please be patient: update of caches -> done!
$par

Single Th1 Th2
-8.084966 -1.224016 11.124512
$value
[1] 3.123698
$counts
function gradient

303 101
$convergence
[1] 1
$message
NULL
$Single
[1] -8.084966
[[2]]
[[2]]$Th
[1] -1.224016 11.124512
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Takacs-Fiksel 3D (inverse)
> tkinv3 <- TKInverse(del3∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)),
+ runs=10000L,
+ domain=Domain(c(-250,-250,-250),c(250,250,250))
+ )
>
NULL
> run(tkinv3,Single=0,Th=c(0,0))
Please be patient: update of caches -> done!
$par

Single Th1 Th2
14.846436 -2.168812 -7.611145
$value
[1] 0.6575588
$counts
function gradient

201 101
$convergence
[1] 1
$message
NULL
$Single
[1] 14.84644
[[2]]
[[2]]$Th
[1] -2.168812 -7.611145
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What I would like to explore with this package:

use of innovations to check wheither the result a Gibbs Markov Chain
seems to be acceptable.

make a lot of experiments in 3D to go through the proof of existence
of Gibbs Delaunay model in R3.

Gibbs model based on regular graphs known as weighted Delaunay
triangulations (dual of Laguerre power diagram).
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