Playing with EBSpatCGAL

R. Drouilhet

FIGAL Team - LJK Grenoble

Plan

(1) Motivation

2 Plot and Scene
(3) Simulation of Delaunay Gibbs point process
(4) Innovations and Residuals
(5) Estimation

PoLiTe project

- Origin: EBSpat a companion package offering simulation and estimation tools for the nearest-neighbour point processes.

PoLiTe project

- Origin: EBSpat a companion package offering simulation and estimation tools for the nearest-neighbour point processes.
- Now: EBSpatCGAL (in fact, better called CGALSpat) is a complete code rewriting of EBSpat using

PoLiTe project

- Origin: EBSpat a companion package offering simulation and estimation tools for the nearest-neighbour point processes.
- Now: EBSpatCGAL (in fact, better called CGALSpat) is a complete code rewriting of EBSpat using
(1) the R package Rcpp as a replacement of my R package CqlsRCom based on the C API of R.

PoLiTe project

- Origin: EBSpat a companion package offering simulation and estimation tools for the nearest-neighbour point processes.
- Now: EBSpatCGAL (in fact, better called CGALSpat) is a complete code rewriting of EBSpat using
(1) the R package Rcpp as a replacement of my R package CqlsRCom based on the C API of R .
(2) the very complete C++ library CGAL (Computational Geometry Algorithms Library) as a replacement of the code developed first in his PhD dissertion by Etienne Bertin.

PoLiTe project

- Origin: EBSpat a companion package offering simulation and estimation tools for the nearest-neighbour point processes.
- Now: EBSpatCGAL (in fact, better called CGALSpat) is a complete code rewriting of EBSpat using
(1) the R package Rcpp as a replacement of my R package CqlsRCom based on the C API of R .
(2) the very complete C++ library CGAL (Computational Geometry Algorithms Library) as a replacement of the code developed first in his PhD dissertion by Etienne Bertin.
- Next: R package PoLiTe (Point and Line Tesselations) as a merging of EBSpatCGAL and LiTe (with Kiên Kiêu as main developer).

Plan

(1) Motivation
(2) Plot and Scene
(3) Simulation of Delaunay Gibbs point process
(4) Innovations and Residuals
(5) Estimation

Delaunay 2D

```
> del2 <- Delaunay()
> insert(del2,x=runif(100),y=runif(100),m=rUnif(100, supp=c(1,2)))
> vertices(del2,"all")
    x y m
10.37379245 0.585985234 2
20.31904557 0.680846427 1
0.25201223 0.151456890 1
40.38706632 0.870159549 1
50.76450500 0.478038448 1
96 0.53653834 0.445746042 1
97 0.94627073 0.682455346 1
98 0.19538909 0.024197013 1
99 0.31864697 0.408334029 1
100 0.03392521 0.973496550 1
```


Delaunay 2D

> \# default Delaunay plot without marks consideration
> plot(del2)

Delaunay 2D

> \# default Delaunay plot with marks
> plot(del2,col=m)

Delaunay 2D

> \# default Voronoi plot with marks
> plot(del2,"vor", col=m)

Delaunay 2D

> \# user-defined scene
> sc <- Scene (graph=del2)
> sc \%<<\% window2d(xlab="x",ylab="y",main="User-defined plot!")
> sc \%<<\% lines (graph) \%<< \% points (graph, col=m) \%<<\% lines (graph, "vor")
> plot(sc)

Delaunay 2D

> \# reuse of the previous scene
> del2bis <- Delaunay()
> insert (del2bis, $x=r u n i f(n<-20), y=r u n i f(n), m=r \operatorname{Unif}(n, \operatorname{supp}=c(1,2))$)
> \# same scene plotted with del2bis
> plot(sc,graph=del2bis)

Delaunay 3D

```
> del3 <- Delaunay(3)
> insert(del3,
+ x=runif(100),y=runif(100),
+ z=runif(100),m=rUnif(100,\operatorname{supp=c (1, 2))}
+ )
> vertices(del3,"all")
\begin{tabular}{rrrrr} 
& \(\boldsymbol{x}\) & \(\boldsymbol{y}\) & \(z\) & m \\
1 & 0.9961741269 & 0.775198824 & 0.86488224 & 2
\end{tabular}
20.0520305042 0.399626697 0.34540173 2
3 0.2620854089 0.998486478 0.80300503 1
40.8135003112 0.149564696 0.95499060 1
50.0955842913 0.673535225 0.50800383 1
96 0.6507950500 0.109926516 0.08267638 1
97 0.6346332736 0.045987471 0.26163885 2
98 0.1535509252 0.050600111 0.20804355 2
99 0.8973158922 0.446122207 0.78324674 2
100 0.3027747020 0.270465934 0.73376692 2
```


Delaunay 3D

> plot(del3,radius=0.01)

Playing with EBSpatCGAL

Delaunay 3D

> plot(del3,radius=0.01)

Delaunay 3D (plot with mark)

> plot(del3,col=m,radius=0.01)

Delaunay 3D (plot with mark)

> plot(del3,col=m,radius=0.01)

Delaunay 3D (plot with mark)

> plot(del3,col=m,radius=0.01)

Playing with EBSpatCGAL

Delaunay 3D (plot with mark)

> plot(del3,col=m,radius=0.01)

Delaunay 3D (plot with mark)

> plot(del3,col=m,radius=0.01)

Regular graph 2D

```
> reg2 <- Regular()
> insert(reg2,x=runif(100),y=runif(100),w=runif(100))
> vertices(reg2)
    [,1] [,2]
    [1,] 0.307228523 0.59749540
    [2,] 0.932679536 0.94436279
    [3,] 0.850657211 0.12352350
    [4,] 0.730368539 0.55508497
    [5,] 0.416309413 0.97319916
[24,] 0.554761716 0.01080638
[25,] 0.995206009 0.43567380
[26,] 0.273091584 0.98411324
[27,] 0.006656302 0.79359428
[28,] 0.875257040}0.2905515
```

Regular graph 2D
$>$ sc <- Scene ()
$>\operatorname{sc} \% \ll \%$ window2d(xlab="x",ylab="y",main="Regular and dual graphs")
> sc \%<<\% lines (graph) \%<<\% points (graph) \%<<\% lines (graph, "vor")
> plot(sc,graph=reg2)

Regular graph 3D

```
> reg3 <- Regular(3)
> insert(reg3,
+ x=runif(100),y=runif(100),
+ z=runif(100),w=runif(100)
+ )
> vertices(reg3)
                    [,1] [,2] [,3]
    [1,] 0.66739553 0.9386865757 0.06735985
    [2,] 0.08513267 0.1697152695 0.86458024
    [3,] 0.92423853 0.0159255203 0.77415013
    [4,] 0.98499313 0.0002473921 0.66801125
    [5,] 0.04380360 0.1667674046 0.38254712
```

```
[28,] 0.44919900 0.1946863390}00.9498345
```

[28,] 0.44919900 0.1946863390}00.9498345
[29,] 0.06152015 0.0677579972 0.73685371
[29,] 0.06152015 0.0677579972 0.73685371
[30,] 0.04773288 0.7621858553 0.54797599
[30,] 0.04773288 0.7621858553 0.54797599
[31,] 0.87561551 0.9772679964 0.94096146
[31,] 0.87561551 0.9772679964 0.94096146
[32,] 0.72143524 0.3870179157 0.47274896

```
[32,] 0.72143524 0.3870179157 0.47274896
```


Regular graph 3D

> plot(sc3,gr=reg3)

Regular graph 3D

> plot(sc3,gr=reg3)

Regular graph 3D
> plot $(\mathrm{sc} 3, \mathrm{gr}=\mathrm{reg} 3)$

Regular graph 3D

> plot(sc3,gr=reg3)

Regular graph 3D

> plot(sc3,gr=reg3)

Scene with many actors

```
> del2 <- Delaunay(); del2bis<-Delaunay()
> insert(del2,x=runif(n<-20),y=runif(n))
> insert(del2bis,x=runif(n, 1, 2),y=runif(n, 1, 2))
> sc2 <- Scene(gr=del2,gr2=del2bis)
> sc2 %<<< window2d(c(0,2),c(0,2),xlab="",ylab="")
> sc2 %<<% lines(gr,col="blue") %<<% points(gr,col="blue")
> sc2 %<<% lines(gr2,col="red") %<<< points(gr2,col="red");plot(sc2)
```


Scene with many colors

```
> del2 <- Delaunay()
> insert(del2,x=runif(n<-300, -350,350),y=runif(n, -350,350))
> sc2g <- Scene(gr=del2) %<<% window2d(c(-350,350),c(-350,350))
> sc2g %<<% lines(gr,when=40<length & length <= 80) %<<<%
+ lines(gr,col="red",lwd=2,when= length <= 40) %<<%
+ lines(gr,col="violet",lty=2,lwd=2,when=80<length) %<<%
+ points(gr);plot(sc2g)
```


Plan

(1) Motivation
(2) Plot and Scene
(3) Simulation of Delaunay Gibbs point process
(4) Innovations and Residuals
(5) Estimation

Simulation 2D

> \# Delaunay
> del2 <- Delaunay(); del2bis <- Delaunay()
> \# Gibbs simulation
> gd2 <- SimGibbs (
$+\operatorname{del2} \sim 2+\operatorname{Del2}(\operatorname{th}[1] *(1<=20)+$ th[2]*(20<1\&l<=80),th=c(2,4)),

+ domain=Domain $(c(-350,-350), c(350,350))$
+)
> \# marked one
> del2m <- Delaunay()
> gd2m <- SimGibbs (
$+\operatorname{del} 2 \mathrm{~m} \sim 2+\operatorname{Del2}(\operatorname{th}[1] *(1<=20)+\operatorname{th}[2] *(20<1 \& 1<=80)$
$+\quad * \operatorname{abs}(v[[1]] \$ m-v[[2]] \$ m), t h=c(2,4)) \mid m \sim \operatorname{Unif}(\operatorname{supp}=c(1,2))$
+)

Simulation 2D

> \# run the simulator and plot the resulted Delaunay graph > run(gd2);plot(del2)

Simulation 2D

> \# one can run the simulator with another Delaunay graph
> run(gd2, current=del2bis) ; plot (del2bis)

Simulation 2D

> \# run the simulator with the marked Delaunay graph
> run(gd2m);plot(del2m,col=m)

Simulation 2D

> \# inside domain
> domIn <- Domain (c $(-250,-250), c(250,250)$)
$>$ \#take a boundary of 1
> del2m1 <- Delaunay()
$>$ insert (del2m1, x=runif ($n<-500,-350,350$), y=runif ($n,-350,350$) ,m=1)
> delete(del2m1,inside=domIn)
$>$ \#take a boundary of 2
> del2m2 <- Delaunay()
$>$ insert (del2m2, x=runif ($\mathrm{n}<-500,-350,350$), y=runif ($n,-350,350$) , m=2)
> delete(del2m2,inside=domIn)

Simulation 2D

> plot (del2m1, col=m)

Simulation 2D

$>\operatorname{run}(g d 2 m$, current $=$ del $2 m 1$, domain=domIn) ; plot $(\operatorname{del} 2 m 1, c o l=m)$

Simulation 2D

> plot (del2m2, col=m)

Simulation 2D

$>\operatorname{run}(g d 2 m$, current $=$ del2m2, domain=domIn) ; plot (del2m2,col=m)

Simulation 3D (Yes! First time!)

> \# Delaunay
> del3 <- Delaunay (3)
> insert (del3, matrix(runif $(300,-350,350)$, ncol=3))
> \# Gibbs simulation
> gd3 <- SimGibbs (
$+\operatorname{del3} \sim 14+\operatorname{Del2}(\operatorname{th}[1] *(1<=20)+$ th $[2] *(20<1 \& 1<=80)$, th=c $(-2,10))$,

+ domain=Domain $(c(-350,-350,-350), c(350,350,350))$
+)
$>$ run (gd3)
$>$ \# scene 3 D
> (sc3 <- Scene()) \%<<\%
+ window3d(gd3, windowRect $=c(0,0,800,800)) \% \ll \%$
+ points (gr,col="violet", radius=5) \%<<\%
+ lines (gr, col="red", lwd=5,when= length $<=20$) \%<<\%
+ lines (gr, lwd=5, col="green", when=20<length \& length $<=80$) \%<<\%
+ lines (gr,col="blue", when=80<length)

Simulation 3D

> plot(sc3,gr=del3)

Playing with EBSpatCGAL

Simulation 3D

> plot(sc3,gr=del3)

Simulation 3D

> plot(sc3,gr=del3)

Simulation 3D

> plot(sc3,gr=del3)

Playing with EBSpatCGAL

Simulation 3D

> plot(sc3,gr=del3)

Playing with EBSpatCGAL

Plan

(1) Motivation
2) Plot and Scene
(3) Simulation of Delaunay Gibbs point process
(4) Innovations and Residuals
(5) Estimation

Innovations and Residuals

- GNZ equation: $\mathbf{E}\left(h(0, \Phi ; \theta) e^{-V\left(0 \mid \Phi ; \theta^{\star}\right)}\right)=\mathbf{E}(h(0, \Phi \backslash 0 ; \theta))$

Innovations and Residuals

- GNZ equation: $\mathbf{E}\left(h(0, \Phi ; \theta) e^{-V\left(0 \mid \Phi ; \theta^{\star}\right)}\right)=\mathbf{E}(h(0, \Phi \backslash 0 ; \theta))$
- h-innovations:

$$
\int_{\Lambda} h\left(x, \varphi ; \theta^{\star}\right) e^{-V\left(x \mid \varphi ; \theta^{\star}\right)} d x-\sum_{x \in \varphi_{\wedge}} h\left(x, \varphi \backslash x ; \theta^{\star}\right)
$$

Innovations and Residuals

- GNZ equation: $\mathbf{E}\left(h(0, \Phi ; \theta) e^{-V\left(0 \mid \Phi ; \theta^{\star}\right)}\right)=\mathbf{E}(h(0, \Phi \backslash 0 ; \theta))$
- h-innovations:

$$
\int_{\Lambda} h\left(x, \varphi ; \theta^{\star}\right) e^{-V\left(x \mid \varphi ; \theta^{\star}\right)} d x-\sum_{x \in \varphi_{\Lambda}} h\left(x, \varphi \backslash x ; \theta^{\star}\right)
$$

- h-residuals:

$$
\int_{\Lambda} h(x, \varphi ; \hat{\theta}) e^{-V(x \mid \varphi ; \hat{\theta})} d x-\sum_{x \in \varphi_{\Lambda}} h(x, \varphi \backslash x ; \hat{\theta})
$$

Innovations and Residuals

- GNZ equation: $\mathbf{E}\left(h(0, \Phi ; \theta) e^{-V\left(0 \mid \Phi ; \theta^{\star}\right)}\right)=\mathbf{E}(h(0, \Phi \backslash 0 ; \theta))$
- h-innovations:

$$
\int_{\Lambda} h\left(x, \varphi ; \theta^{\star}\right) e^{-V\left(x \mid \varphi ; \theta^{\star}\right)} d x-\sum_{x \in \varphi_{\wedge}} h\left(x, \varphi \backslash x ; \theta^{\star}\right)
$$

- h-residuals:

$$
\int_{\Lambda} h(x, \varphi ; \hat{\theta}) e^{-V(x \mid \varphi ; \hat{\theta})} d x-\sum_{x \in \varphi \Lambda} h(x, \varphi \backslash x ; \hat{\theta})
$$

- inverse h-residuals:

$$
\int_{\Lambda} h(x, \varphi ; \hat{\theta}) d x-\sum_{x \in \varphi_{\Lambda}} h(x, \varphi \backslash x ; \hat{\theta}) e^{V(x \mid \varphi \backslash x ; \hat{\theta})}
$$

GNZ Cache

```
> gnz <- GNZCache(
+ del2~\operatorname{Del2}(\operatorname{Th}[1]*(l<=20)+Th[2]*(20<l & l<=80)) ,
+ 1,del2(l<=20), del2(20<l & l<=80),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250, 250))
+ )
> run(gnz,Single=2,Th=c (2,4))
Please be patient: update of caches -> done!
$first
[1] 0.0003564326 0.0005583502 -0.0001283583
$second
[1] 0.000292 0.000380-0.000028
```


Innovations

```
> res <- Resid(
+ del2~Del2(Th[1]* (l<=20) +Th[2]* (20<l & l<=80)) ,
+ 1,del2(l<=20), del2(20<l & l<=80),
    runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250))
+ )
> run(res,Single=2,Th=c(2,4))
Please be patient: update of caches -> done!
[1] 6.023250e-05 1.046913e-04 -3.768942e-05
```


Innovations

```
> resid <- Resid(
+ del2~Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)) ,
+ 1,del2(l<=20), del2(20<l & l<=80),
+ all2(range=100|l<=20),
+ all2(range=100|20<l & l<80),
+ del3(ta),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250))
+ )
> run(resid,Single=2,Th=c(2,4))
Please be patient: update of caches -> done!
[1] 4.076217e-05 8.713605e-05 -2.409239e-05 1.092030e-04
[5] 3.228932e-04 -1.649223e-02
```


Plan

(1) Motivation
2) Plot and Scene
(3) Simulation of Delaunay Gibbs point process
(4) Innovations and Residuals
(5) Estimation

```
Pseudo-Likelihood 2D
> pseudo <- Pseudo(del2~Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)),
+ runs=10000L,
+ domain=Domain(c (-250,-250),c(250,250)),
+ expo=TRUE
+ )
> run(pseudo,Single=0,Th=c(0,0))
Please be patient: update of caches -> done!
$par
    Single Th1 Th2
1.543463 2.364175 3.864422
$value
[1] 0.001532144
$counts
function gradient
    1 1
$convergence
[1] 0
$message
NULL
$Single
[1] 1.543463
[[2]]
[[2]]$Th
[1] 2.364175 3.864422
```


Pseudo-Likelihood 3D

> pseudo3 <- Pseudo (del3~Del2 (Th[1]* (l<=20) +Th[2]*(20<l \& l<=80)),

+ runs $=10000 \mathrm{~L}$,
+ domain=Domain $(c(-250,-250,-250), c(250,250,250))$,
+ expo=TRUE
+)
$>$
NULL
> run (pseudo3, Single=0, Th=c (0,0))
Please be patient: update of caches $->$ done!
\$par
Single Th1 Th2
13.992761 -1.465786 11.862158
\$value
[1] 5.874762e-06
\$counts
function gradient
1
1
\$convergence
[1] 0
\$message
NULL
\$Single
[1] 13.99276
[[2]]
[[2]]\$Th

```
Takacs-Fiksel 2D (inverse)
> tkinv <- TKInverse(del2~Del2(Th[1]*(l<=20) +Th[2]*(20<l & l<=80)),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250))
+ )
> run(tkinv, Single=0,Th=c(0,0))
Please be patient: update of caches }->\mathrm{ done!
$par
    Single Th1 Th2
-8.084966-1.224016 11.124512
$value
    [1] 3.123698
$counts
function gradient
    303 101
$convergence
[1] 1
$message
NULL
$Single
[1] -8.084966
[[2]]
[[2]]$Th
[1] -1.224016 11.124512
```

```
Takacs-Fiksel 3D (inverse)
> tkinv3 <- TKInverse(del3~Del2(Th[1]*(l<=20) +Th[2]*(20<l & l<=80)),
+ runs=10000I,
+ domain=Domain(c(-250,-250,-250),c(250,250,250))
+ )
>
NULL
> run(tkinv3, Single=0,Th=c(0,0))
Please be patient: update of caches -> done!
$par
    Single Thl Th2
14.846436-2.168812-7.611145
$value
[1] 0.6575588
$counts
function gradient
    201 101
$convergence
[1] 1
$message
NULL
$Single
[1] 14.84644
[[2]]
[[2]]$Th
[1] -2.168812 -7.611145

\section*{What I would like to explore with this package:}
- use of innovations to check wheither the result a Gibbs Markov Chain seems to be acceptable.
- make a lot of experiments in 3D to go through the proof of existence of Gibbs Delaunay model in \(\mathbb{R}^{3}\).
- Gibbs model based on regular graphs known as weighted Delaunay triangulations (dual of Laguerre power diagram).```

