
Playing with EBSpatCGAL

R. Drouilhet

FIGAL Team - LJK Grenoble

R. (FIGAL) Playing with EBSpatCGAL 1 / 42

Plan

1 Motivation

2 Plot and Scene

3 Simulation of Delaunay Gibbs point process

4 Innovations and Residuals

5 Estimation

R. (FIGAL) Playing with EBSpatCGAL 2 / 42

PoLiTe project

Origin: EBSpat a companion package offering simulation and
estimation tools for the nearest-neighbour point processes.

Now: EBSpatCGAL (in fact, better called CGALSpat) is a complete
code rewriting of EBSpat using

1 the R package Rcpp as a replacement of my R package CqlsRCom
based on the C API of R .

2 the very complete C++ library CGAL (Computational Geometry
Algorithms Library) as a replacement of the code developed first in his
PhD dissertion by Etienne Bertin.

Next: R package PoLiTe (Point and Line Tesselations) as a merging
of EBSpatCGAL and LiTe (with Kiên Kiêu as main developer).

R. (FIGAL) Playing with EBSpatCGAL 3 / 42

PoLiTe project

Origin: EBSpat a companion package offering simulation and
estimation tools for the nearest-neighbour point processes.

Now: EBSpatCGAL (in fact, better called CGALSpat) is a complete
code rewriting of EBSpat using

1 the R package Rcpp as a replacement of my R package CqlsRCom
based on the C API of R .

2 the very complete C++ library CGAL (Computational Geometry
Algorithms Library) as a replacement of the code developed first in his
PhD dissertion by Etienne Bertin.

Next: R package PoLiTe (Point and Line Tesselations) as a merging
of EBSpatCGAL and LiTe (with Kiên Kiêu as main developer).

R. (FIGAL) Playing with EBSpatCGAL 3 / 42

PoLiTe project

Origin: EBSpat a companion package offering simulation and
estimation tools for the nearest-neighbour point processes.

Now: EBSpatCGAL (in fact, better called CGALSpat) is a complete
code rewriting of EBSpat using

1 the R package Rcpp as a replacement of my R package CqlsRCom
based on the C API of R .

2 the very complete C++ library CGAL (Computational Geometry
Algorithms Library) as a replacement of the code developed first in his
PhD dissertion by Etienne Bertin.

Next: R package PoLiTe (Point and Line Tesselations) as a merging
of EBSpatCGAL and LiTe (with Kiên Kiêu as main developer).

R. (FIGAL) Playing with EBSpatCGAL 3 / 42

PoLiTe project

Origin: EBSpat a companion package offering simulation and
estimation tools for the nearest-neighbour point processes.

Now: EBSpatCGAL (in fact, better called CGALSpat) is a complete
code rewriting of EBSpat using

1 the R package Rcpp as a replacement of my R package CqlsRCom
based on the C API of R .

2 the very complete C++ library CGAL (Computational Geometry
Algorithms Library) as a replacement of the code developed first in his
PhD dissertion by Etienne Bertin.

Next: R package PoLiTe (Point and Line Tesselations) as a merging
of EBSpatCGAL and LiTe (with Kiên Kiêu as main developer).

R. (FIGAL) Playing with EBSpatCGAL 3 / 42

PoLiTe project

Origin: EBSpat a companion package offering simulation and
estimation tools for the nearest-neighbour point processes.

Now: EBSpatCGAL (in fact, better called CGALSpat) is a complete
code rewriting of EBSpat using

1 the R package Rcpp as a replacement of my R package CqlsRCom
based on the C API of R .

2 the very complete C++ library CGAL (Computational Geometry
Algorithms Library) as a replacement of the code developed first in his
PhD dissertion by Etienne Bertin.

Next: R package PoLiTe (Point and Line Tesselations) as a merging
of EBSpatCGAL and LiTe (with Kiên Kiêu as main developer).

R. (FIGAL) Playing with EBSpatCGAL 3 / 42

Plan

1 Motivation

2 Plot and Scene

3 Simulation of Delaunay Gibbs point process

4 Innovations and Residuals

5 Estimation

R. (FIGAL) Playing with EBSpatCGAL 4 / 42

Delaunay 2D

> del2 <- Delaunay()
> insert(del2,x=runif(100),y=runif(100),m=rUnif(100,supp=c(1,2)))
> vertices(del2,"all")

x y m
1 0.37379245 0.585985234 2
2 0.31904557 0.680846427 1
3 0.25201223 0.151456890 1
4 0.38706632 0.870159549 1
5 0.76450500 0.478038448 1
...

...
96 0.53653834 0.445746042 1
97 0.94627073 0.682455346 1
98 0.19538909 0.024197013 1
99 0.31864697 0.408334029 1
100 0.03392521 0.973496550 1

R. (FIGAL) Playing with EBSpatCGAL 5 / 42

Delaunay 2D

> # default Delaunay plot without marks consideration
> plot(del2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 6 / 42

Delaunay 2D

> # default Delaunay plot with marks
> plot(del2,col=m)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 7 / 42

Delaunay 2D

> # default Voronoi plot with marks
> plot(del2,"vor",col=m)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 8 / 42

Delaunay 2D

> # user-defined scene
> sc <- Scene(graph=del2)
> sc %<<% window2d(xlab="x",ylab="y",main="User-defined plot!")
> sc %<<% lines(graph) %<<% points(graph,col=m) %<<% lines(graph,"vor")
> plot(sc)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 9 / 42

Delaunay 2D

> # reuse of the previous scene
> del2bis <- Delaunay()
> insert(del2bis,x=runif(n<-20),y=runif(n),m=rUnif(n,supp=c(1,2)))
> # same scene plotted with del2bis
> plot(sc,graph=del2bis)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 10 / 42

Delaunay 3D

> del3 <- Delaunay(3)
> insert(del3,
+ x=runif(100),y=runif(100),
+ z=runif(100),m=rUnif(100,supp=c(1,2))
+)
> vertices(del3,"all")

x y z m
1 0.9961741269 0.775198824 0.86488224 2
2 0.0520305042 0.399626697 0.34540173 2
3 0.2620854089 0.998486478 0.80300503 1
4 0.8135003112 0.149564696 0.95499060 1
5 0.0955842913 0.673535225 0.50800383 1
...

...
96 0.6507950500 0.109926516 0.08267638 1
97 0.6346332736 0.045987471 0.26163885 2
98 0.1535509252 0.050600111 0.20804355 2
99 0.8973158922 0.446122207 0.78324674 2
100 0.3027747020 0.270465934 0.73376692 2

R. (FIGAL) Playing with EBSpatCGAL 11 / 42

Delaunay 3D

> plot(del3,radius=0.01)

R. (FIGAL) Playing with EBSpatCGAL 12 / 42

Delaunay 3D

> plot(del3,radius=0.01)

R. (FIGAL) Playing with EBSpatCGAL 12 / 42

Delaunay 3D

> plot(del3,radius=0.01)

R. (FIGAL) Playing with EBSpatCGAL 12 / 42

Delaunay 3D

> plot(del3,radius=0.01)

R. (FIGAL) Playing with EBSpatCGAL 12 / 42

Delaunay 3D

> plot(del3,radius=0.01)

R. (FIGAL) Playing with EBSpatCGAL 12 / 42

Delaunay 3D (plot with mark)

> plot(del3,col=m,radius=0.01)

R. (FIGAL) Playing with EBSpatCGAL 13 / 42

Delaunay 3D (plot with mark)

> plot(del3,col=m,radius=0.01)

R. (FIGAL) Playing with EBSpatCGAL 13 / 42

Delaunay 3D (plot with mark)

> plot(del3,col=m,radius=0.01)

R. (FIGAL) Playing with EBSpatCGAL 13 / 42

Delaunay 3D (plot with mark)

> plot(del3,col=m,radius=0.01)

R. (FIGAL) Playing with EBSpatCGAL 13 / 42

Delaunay 3D (plot with mark)

> plot(del3,col=m,radius=0.01)

R. (FIGAL) Playing with EBSpatCGAL 13 / 42

Regular graph 2D

> reg2 <- Regular()
> insert(reg2,x=runif(100),y=runif(100),w=runif(100))
> vertices(reg2)

[,1] [,2]
[1,] 0.307228523 0.59749540
[2,] 0.932679536 0.94436279
[3,] 0.850657211 0.12352350
[4,] 0.730368539 0.55508497
[5,] 0.416309413 0.97319916
...

...
[24,] 0.554761716 0.01080638
[25,] 0.995206009 0.43567380
[26,] 0.273091584 0.98411324
[27,] 0.006656302 0.79359428
[28,] 0.875257040 0.29055158

R. (FIGAL) Playing with EBSpatCGAL 14 / 42

Regular graph 2D

> sc <- Scene()
> sc %<<% window2d(xlab="x",ylab="y",main="Regular and dual graphs")
> sc %<<% lines(graph) %<<% points(graph) %<<% lines(graph,"vor")
> plot(sc,graph=reg2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 15 / 42

Regular graph 3D

> reg3 <- Regular(3)
> insert(reg3,
+ x=runif(100),y=runif(100),
+ z=runif(100),w=runif(100)
+)
> vertices(reg3)

[,1] [,2] [,3]
[1,] 0.66739553 0.9386865757 0.06735985
[2,] 0.08513267 0.1697152695 0.86458024
[3,] 0.92423853 0.0159255203 0.77415013
[4,] 0.98499313 0.0002473921 0.66801125
[5,] 0.04380360 0.1667674046 0.38254712
...

...
[28,] 0.44919900 0.1946863390 0.94983455
[29,] 0.06152015 0.0677579972 0.73685371
[30,] 0.04773288 0.7621858553 0.54797599
[31,] 0.87561551 0.9772679964 0.94096146
[32,] 0.72143524 0.3870179157 0.47274896

R. (FIGAL) Playing with EBSpatCGAL 16 / 42

Regular graph 3D

> plot(sc3,gr=reg3)

R. (FIGAL) Playing with EBSpatCGAL 17 / 42

Regular graph 3D

> plot(sc3,gr=reg3)

R. (FIGAL) Playing with EBSpatCGAL 17 / 42

Regular graph 3D

> plot(sc3,gr=reg3)

R. (FIGAL) Playing with EBSpatCGAL 17 / 42

Regular graph 3D

> plot(sc3,gr=reg3)

R. (FIGAL) Playing with EBSpatCGAL 17 / 42

Regular graph 3D

> plot(sc3,gr=reg3)

R. (FIGAL) Playing with EBSpatCGAL 17 / 42

Scene with many actors

> del2 <- Delaunay();del2bis<-Delaunay()
> insert(del2,x=runif(n<-20),y=runif(n))
> insert(del2bis,x=runif(n,1,2),y=runif(n,1,2))
> sc2 <- Scene(gr=del2,gr2=del2bis)
> sc2 %<<% window2d(c(0,2),c(0,2),xlab="",ylab="")
> sc2 %<<% lines(gr,col="blue") %<<% points(gr,col="blue")
> sc2 %<<% lines(gr2,col="red") %<<% points(gr2,col="red");plot(sc2)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 18 / 42

Scene with many colors

> del2 <- Delaunay()
> insert(del2,x=runif(n<-300,-350,350),y=runif(n,-350,350))
> sc2g <- Scene(gr=del2) %<<% window2d(c(-350,350),c(-350,350))
> sc2g %<<% lines(gr,when=40<length & length <= 80) %<<%
+ lines(gr,col="red",lwd=2,when= length <= 40) %<<%
+ lines(gr,col="violet",lty=2,lwd=2,when=80<length) %<<%
+ points(gr);plot(sc2g)

−400 −200 0 200 400

−
30

0
−

10
0

0
10

0
20

0
30

0

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 19 / 42

Plan

1 Motivation

2 Plot and Scene

3 Simulation of Delaunay Gibbs point process

4 Innovations and Residuals

5 Estimation

R. (FIGAL) Playing with EBSpatCGAL 20 / 42

Simulation 2D

> # Delaunay
> del2 <- Delaunay();del2bis <- Delaunay()
> # Gibbs simulation
> gd2 <- SimGibbs(
+ del2 ∼ 2 + Del2(th[1]*(l<=20)+th[2]*(20<l & l<=80),th=c(2,4)),
+ domain=Domain(c(-350,-350),c(350,350))
+)
> # marked one
> del2m <- Delaunay()
> gd2m <- SimGibbs(
+ del2m ∼ 2 + Del2(th[1]*(l<=20) + th[2]*(20<l & l<=80)
+ * abs(v[[1]]$m-v[[2]]$m), th=c(2,4))| m ∼ Unif(supp=c(1,2))
+)

R. (FIGAL) Playing with EBSpatCGAL 21 / 42

Simulation 2D

> # run the simulator and plot the resulted Delaunay graph
> run(gd2);plot(del2)

−400 −200 0 200 400

−
30

0
−

10
0

0
10

0
20

0
30

0

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 22 / 42

Simulation 2D

> # one can run the simulator with another Delaunay graph
> run(gd2,current=del2bis);plot(del2bis)

−400 −200 0 200 400

−
30

0
−

10
0

0
10

0
20

0
30

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 23 / 42

Simulation 2D

> # run the simulator with the marked Delaunay graph
> run(gd2m);plot(del2m,col=m)

−400 −200 0 200 400

−
30

0
−

10
0

0
10

0
20

0
30

0

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

R. (FIGAL) Playing with EBSpatCGAL 24 / 42

Simulation 2D

> # inside domain
> domIn <- Domain(c(-250,-250),c(250,250))
> #take a boundary of 1
> del2m1 <- Delaunay()
> insert(del2m1,x=runif(n<-500,-350,350),y=runif(n,-350,350),m=1)
> delete(del2m1,inside=domIn)
> #take a boundary of 2
> del2m2 <- Delaunay()
> insert(del2m2,x=runif(n<-500,-350,350),y=runif(n,-350,350),m=2)
> delete(del2m2,inside=domIn)

R. (FIGAL) Playing with EBSpatCGAL 25 / 42

Simulation 2D

> plot(del2m1,col=m)

−400 −200 0 200 400

−
30

0
−

10
0

0
10

0
20

0
30

0 ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 26 / 42

Simulation 2D

> run(gd2m,current=del2m1,domain=domIn);plot(del2m1,col=m)

−400 −200 0 200 400

−
30

0
−

10
0

0
10

0
20

0
30

0

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

R. (FIGAL) Playing with EBSpatCGAL 27 / 42

Simulation 2D

> plot(del2m2,col=m)

−400 −200 0 200 400

−
30

0
−

10
0

0
10

0
20

0
30

0

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 28 / 42

Simulation 2D

> run(gd2m,current=del2m2,domain=domIn);plot(del2m2,col=m)

−400 −200 0 200 400

−
30

0
−

10
0

0
10

0
20

0
30

0

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

R. (FIGAL) Playing with EBSpatCGAL 29 / 42

Simulation 3D (Yes! First time!)

> # Delaunay
> del3 <- Delaunay(3)
> insert(del3,matrix(runif(300,-350,350),ncol=3))
> # Gibbs simulation
> gd3 <- SimGibbs(
+ del3 ∼ 14 + Del2(th[1]*(l<=20)+th[2]*(20<l & l<=80),th=c(-2,10)),
+ domain=Domain(c(-350,-350,-350),c(350,350,350))
+)
> run(gd3)
> # scene 3D
> (sc3 <- Scene()) %<<%
+ window3d(gd3,windowRect=c(0,0,800,800)) %<<%
+ points(gr,col="violet",radius=5) %<<%
+ lines(gr,col="red",lwd=5,when= length <= 20) %<<%
+ lines(gr,lwd=5,col="green",when=20<length & length <= 80) %<<%
+ lines(gr,col="blue",when=80<length)

R. (FIGAL) Playing with EBSpatCGAL 30 / 42

Simulation 3D

> plot(sc3,gr=del3)

R. (FIGAL) Playing with EBSpatCGAL 31 / 42

Simulation 3D

> plot(sc3,gr=del3)

R. (FIGAL) Playing with EBSpatCGAL 31 / 42

Simulation 3D

> plot(sc3,gr=del3)

R. (FIGAL) Playing with EBSpatCGAL 31 / 42

Simulation 3D

> plot(sc3,gr=del3)

R. (FIGAL) Playing with EBSpatCGAL 31 / 42

Simulation 3D

> plot(sc3,gr=del3)

R. (FIGAL) Playing with EBSpatCGAL 31 / 42

Plan

1 Motivation

2 Plot and Scene

3 Simulation of Delaunay Gibbs point process

4 Innovations and Residuals

5 Estimation

R. (FIGAL) Playing with EBSpatCGAL 32 / 42

Innovations and Residuals

GNZ equation: E
(
h (0,Φ; θ) e−V (0|Φ;θ?)

)
= E (h (0,Φ \ 0; θ))

h−innovations:∫
Λ
h (x , ϕ; θ?) e−V (x |ϕ;θ?)dx −

∑
x∈ϕΛ

h (x , ϕ \ x ; θ?)

h−residuals:∫
Λ
h
(
x , ϕ; θ̂

)
e−V (x |ϕ;θ̂)dx −

∑
x∈ϕΛ

h
(
x , ϕ \ x ; θ̂

)
inverse h−residuals:∫

Λ
h
(
x , ϕ; θ̂

)
dx −

∑
x∈ϕΛ

h
(
x , ϕ \ x ; θ̂

)
eV (x |ϕ\x ;θ̂)

R. (FIGAL) Playing with EBSpatCGAL 33 / 42

Innovations and Residuals

GNZ equation: E
(
h (0,Φ; θ) e−V (0|Φ;θ?)

)
= E (h (0,Φ \ 0; θ))

h−innovations:∫
Λ
h (x , ϕ; θ?) e−V (x |ϕ;θ?)dx −

∑
x∈ϕΛ

h (x , ϕ \ x ; θ?)

h−residuals:∫
Λ
h
(
x , ϕ; θ̂

)
e−V (x |ϕ;θ̂)dx −

∑
x∈ϕΛ

h
(
x , ϕ \ x ; θ̂

)
inverse h−residuals:∫

Λ
h
(
x , ϕ; θ̂

)
dx −

∑
x∈ϕΛ

h
(
x , ϕ \ x ; θ̂

)
eV (x |ϕ\x ;θ̂)

R. (FIGAL) Playing with EBSpatCGAL 33 / 42

Innovations and Residuals

GNZ equation: E
(
h (0,Φ; θ) e−V (0|Φ;θ?)

)
= E (h (0,Φ \ 0; θ))

h−innovations:∫
Λ
h (x , ϕ; θ?) e−V (x |ϕ;θ?)dx −

∑
x∈ϕΛ

h (x , ϕ \ x ; θ?)

h−residuals:∫
Λ
h
(
x , ϕ; θ̂

)
e−V (x |ϕ;θ̂)dx −

∑
x∈ϕΛ

h
(
x , ϕ \ x ; θ̂

)
inverse h−residuals:∫

Λ
h
(
x , ϕ; θ̂

)
dx −

∑
x∈ϕΛ

h
(
x , ϕ \ x ; θ̂

)
eV (x |ϕ\x ;θ̂)

R. (FIGAL) Playing with EBSpatCGAL 33 / 42

Innovations and Residuals

GNZ equation: E
(
h (0,Φ; θ) e−V (0|Φ;θ?)

)
= E (h (0,Φ \ 0; θ))

h−innovations:∫
Λ
h (x , ϕ; θ?) e−V (x |ϕ;θ?)dx −

∑
x∈ϕΛ

h (x , ϕ \ x ; θ?)

h−residuals:∫
Λ
h
(
x , ϕ; θ̂

)
e−V (x |ϕ;θ̂)dx −

∑
x∈ϕΛ

h
(
x , ϕ \ x ; θ̂

)
inverse h−residuals:∫

Λ
h
(
x , ϕ; θ̂

)
dx −

∑
x∈ϕΛ

h
(
x , ϕ \ x ; θ̂

)
eV (x |ϕ\x ;θ̂)

R. (FIGAL) Playing with EBSpatCGAL 33 / 42

GNZ Cache

> gnz <- GNZCache(
+ del2∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)) ,
+ 1,del2(l<=20), del2(20<l & l<=80),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250))
+)
> run(gnz,Single=2,Th=c(2,4))
Please be patient: update of caches -> done!
$first
[1] 0.0003564326 0.0005583502 -0.0001283583
$second
[1] 0.000292 0.000380 -0.000028

R. (FIGAL) Playing with EBSpatCGAL 34 / 42

Innovations

> res <- Resid(
+ del2∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)) ,
+ 1,del2(l<=20), del2(20<l & l<=80),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250))
+)
> run(res,Single=2,Th=c(2,4))
Please be patient: update of caches -> done!
[1] 6.023250e-05 1.046913e-04 -3.768942e-05

R. (FIGAL) Playing with EBSpatCGAL 35 / 42

Innovations

> resid <- Resid(
+ del2∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)) ,
+ 1,del2(l<=20), del2(20<l & l<=80),
+ all2(range=100|l<=20),
+ all2(range=100|20<l & l<80),
+ del3(ta),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250))
+)
> run(resid,Single=2,Th=c(2,4))
Please be patient: update of caches -> done!
[1] 4.076217e-05 8.713605e-05 -2.409239e-05 1.092030e-04
[5] 3.228932e-04 -1.649223e-02

R. (FIGAL) Playing with EBSpatCGAL 36 / 42

Plan

1 Motivation

2 Plot and Scene

3 Simulation of Delaunay Gibbs point process

4 Innovations and Residuals

5 Estimation

R. (FIGAL) Playing with EBSpatCGAL 37 / 42

Pseudo-Likelihood 2D
> pseudo <- Pseudo(del2∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250)),
+ expo=TRUE
+)
> run(pseudo,Single=0,Th=c(0,0))
Please be patient: update of caches -> done!
$par
Single Th1 Th2

1.543463 2.364175 3.864422
$value
[1] 0.001532144
$counts
function gradient

1 1
$convergence
[1] 0
$message
NULL
$Single
[1] 1.543463
[[2]]
[[2]]$Th
[1] 2.364175 3.864422

R. (FIGAL) Playing with EBSpatCGAL 38 / 42

Pseudo-Likelihood 3D
> pseudo3 <- Pseudo(del3∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)),
+ runs=10000L,
+ domain=Domain(c(-250,-250,-250),c(250,250,250)),
+ expo=TRUE
+)
>
NULL
> run(pseudo3,Single=0,Th=c(0,0))
Please be patient: update of caches -> done!
$par

Single Th1 Th2
13.992761 -1.465786 11.862158
$value
[1] 5.874762e-06
$counts
function gradient

1 1
$convergence
[1] 0
$message
NULL
$Single
[1] 13.99276
[[2]]
[[2]]$Th
[1] -1.465786 11.862158R. (FIGAL) Playing with EBSpatCGAL 39 / 42

Takacs-Fiksel 2D (inverse)

> tkinv <- TKInverse(del2∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)),
+ runs=10000L,
+ domain=Domain(c(-250,-250),c(250,250))
+)
> run(tkinv,Single=0,Th=c(0,0))
Please be patient: update of caches -> done!
$par

Single Th1 Th2
-8.084966 -1.224016 11.124512
$value
[1] 3.123698
$counts
function gradient

303 101
$convergence
[1] 1
$message
NULL
$Single
[1] -8.084966
[[2]]
[[2]]$Th
[1] -1.224016 11.124512

R. (FIGAL) Playing with EBSpatCGAL 40 / 42

Takacs-Fiksel 3D (inverse)
> tkinv3 <- TKInverse(del3∼Del2(Th[1]*(l<=20)+Th[2]*(20<l & l<=80)),
+ runs=10000L,
+ domain=Domain(c(-250,-250,-250),c(250,250,250))
+)
>
NULL
> run(tkinv3,Single=0,Th=c(0,0))
Please be patient: update of caches -> done!
$par

Single Th1 Th2
14.846436 -2.168812 -7.611145
$value
[1] 0.6575588
$counts
function gradient

201 101
$convergence
[1] 1
$message
NULL
$Single
[1] 14.84644
[[2]]
[[2]]$Th
[1] -2.168812 -7.611145

R. (FIGAL) Playing with EBSpatCGAL 41 / 42

What I would like to explore with this package:

use of innovations to check wheither the result a Gibbs Markov Chain
seems to be acceptable.

make a lot of experiments in 3D to go through the proof of existence
of Gibbs Delaunay model in R3.

Gibbs model based on regular graphs known as weighted Delaunay
triangulations (dual of Laguerre power diagram).

R. (FIGAL) Playing with EBSpatCGAL 42 / 42

	Motivation
	Plot and Scene
	Simulation of Delaunay Gibbs point process
	Innovations and Residuals
	Estimation

