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Data and Problem:

1. Conceptual model of a situation = Thematic Model1. Conceptual model of a situation = Thematic Model

Economic,Social
& Cultural

indicators of city
prior to local electionIndicators describing 

new policy in city
1 year after election

Changes in
indicators

5 years after
election

Perception of policy
by city's population

5 years after
election
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Theme 2

Theme 1

Theme 3

Theme 4

unit 1
:
:
:

unit n

variables

variables

variables

variables

unit 1
:
:
:

unit n

unit 1
:
:
:

unit n

unit 1
:
:
:

unit n

Data and Problem:

1. Conceptual model of a situation = Thematic Model1. Conceptual model of a situation = Thematic Model
Numeric variables (so far)
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2. The Path-Modelling problem2. The Path-Modelling problem

variables

variables

variables

variables

● Too many variables in themes! = high dimension

Data and Problem:
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Data and Problem:

⇒ Reduce dimension
in each theme ...

through a few
Thematic Components

2. The Path-Modelling problem2. The Path-Modelling problem

f

g2

g1

h1

h2
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... non-redundant, strong, and...
X

Data and Problem:

g2

g1⇒ Reduce dimension
in each theme ...

through a few
Thematic Components

2. The Path-Modelling problem2. The Path-Modelling problem
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Data and Problem:

h1=b0 f +b1 g1+b2 g2+εh1

f =a1
1 g1+a2

1 g 2+ε f

h2=c0 f +c1 g1+c2 g 2+εh2

etc.

⇒ Reduce dimension
in each theme ...

through a few
Thematic Components

... satisfying the model.

2. The Path-Modelling problem2. The Path-Modelling problem

f

g2

g1

h1

h2
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⇒ How many components in
each theme?

... and which?

Data and Problem:

2. The Path-Modelling problem2. The Path-Modelling problem

f

g2

g1

h1

h2
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No bivariate correlation r(f,g)

Pb: Every useful
component partly
depends on all others
connected to it,
directly or not...

f

g

How THEME works

2. The Path-Modelling problem2. The Path-Modelling problem

g

f

r2(g, f ) = 0
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No bivariate correlation r(f,g)
Important partial effect of f on g, conditional on h

Pb: Every useful
component partly
depends on all others
connected to it,
directly or not...

f h

g

How THEME works

1. Goodness of Fit of the Component Model1. Goodness of Fit of the Component Model

g

f

h

R2(g |f,h) = 1
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g

f

h

R2(g |f,h) = 1

⇒ THEME uses a Goodness-of-Fit criterion ψ capturing
multivariate component-relationships

Pb: Every useful
component partly
depends on all others
connected to it,
directly or not...

f h

g

How THEME works

1. Goodness of Fit of the Component Model1. Goodness of Fit of the Component Model

Proper (partial) effects cannot be correctly captured
through global bivariate indicators.
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2. Components must capture interpretable variable structures2. Components must capture interpretable variable structures

too far!

How THEME works

To be interpretable, components must be structurally strong,
i.e. close to observed variables bundles 
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2. Components must capture interpretable variable structures2. Components must capture interpretable variable structures

To be interpretable, components must be structurally strong,
i.e. close to observed variables bundles 

too far!

THEME uses an indicator of structural strength, ϕ ≃ closeness to bundles.

How THEME works
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2. Components must capture interpretable variable structures2. Components must capture interpretable variable structures

How THEME works

But What exactly is a bundle?

The question arises of the “locality” of the bundles of directions to focus on. 

We introduce a parameter l into ϕ , to tune the locality considered. Example:

To be interpretable, components must be structurally strong,
i.e. close to observed variables bundles 
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2. Components must capture interpretable variable structures2. Components must capture interpretable variable structures

But What exactly is a bundle?

The question arises of the “locality” of the bundles of directions to focus on. 

... one bundle? (l <<)

How THEME works

We introduce a parameter l into ϕ , to tune the locality considered. Example:

To be interpretable, components must be structurally strong,
i.e. close to observed variables bundles 
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2. Components must capture interpretable variable structures2. Components must capture interpretable variable structures

But What exactly is a bundle?

The question arises of the “locality” of the bundles of directions to focus on. 

... two bundles? (l ↑)

We introduce a parameter l into ϕ , to tune the locality considered. Example:

How THEME works

To be interpretable, components must be structurally strong,
i.e. close to observed variables bundles 
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2. Components must capture interpretable variable structures2. Components must capture interpretable variable structures

But What exactly is a bundle?

The question arises of the “locality” of the bundles of directions to focus on. 

... four bundles? (l ↑↑)

We introduce a parameter l into ϕ , to tune the locality considered. Example:

How THEME works

To be interpretable, components must be structurally strong,
i.e. close to observed variables bundles 
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2. Components must capture interpretable variable structures2. Components must capture interpretable variable structures

But What exactly is a bundle?

The question arises of the “locality” of the bundles of directions to focus on. 

... eight bundles, each one being
a single direction? (l → ∞)

We introduce a parameter l into ϕ , to tune the locality considered. Example:

How THEME works

To be interpretable, components must be structurally strong,
i.e. close to observed variables bundles 
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2. Components must capture interpretable variable structures2. Components must capture interpretable variable structures

But What exactly is a bundle?

The question arises of the “locality” of the bundles of directions to focus on. 

This ultimately depends on the data
⇒  Best l to be found through cross-validation.

We introduce a parameter l into ϕ , to tune the locality considered. Example:

How THEME works

To be interpretable, components must be structurally strong,
i.e. close to observed variables bundles 

... eight bundles, each one being
a single direction? (l → ∞)
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3. Combining goodness of fit ψ and structural strength ϕ3. Combining goodness of fit ψ and structural strength ϕ

How THEME works

ψ( f )ϕl ( f )s

GoF            Str.      importance given to the SR relative to the GoF .

The criterion to be maximised by a component f, given ALL others:

Relative variations compensate at optimum

+1% on ϕ is compensated by -s% on ψ
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4. Algorithm → component hierarchy4. Algorithm → component hierarchy

How THEME works

● The local-nesting (LocNes) principle: 
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is the best component with respect to the
criterion;
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How THEME works
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 , given all components in other groups:
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...  etc.

is the best component with respect to the
criterion;

is its best orthogonal complement
⊥ ⊥
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4. Algorithm → component hierarchy4. Algorithm → component hierarchy

How THEME works

● The local-nesting (LocNes) principle: 
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In X
r
 , given all components in other groups:

f
r
2

...  etc.

is the best component with respect to the
criterion;

is its best orthogonal complement

And the algorithm loops
over groups X

r
 until

convergence.
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?
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Local nesting makes backward selection natural and easy:
Start with too many components per theme, so as to capture real
partial effects.
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?
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The last component in each theme best
complements all other components → 

● measure the gain it brings;

Local nesting makes backward selection natural and easy:
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The last component in each theme best
complements all other components → 

● measure the gain it brings;

● compare this gain to that of all last
components;

Local nesting makes backward selection natural and easy:
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?

Local nesting makes backward selection natural and easy:

×The last component in each theme best
complements all other components → 

● measure the gain it brings;

● compare this gain to that of all last
components;

● eliminate the component bringing the
smallest gain;

● re-estimate the model, etc.
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?
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Local nesting makes backward selection 
natural and easy:

Example:

Cross-validation 
prediction error rate

Removal step0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?
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natural and easy: ×
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?

f
p
1X

p

f
r
1X

r
f

r
2

f
s
1 f

s
2X

s

f
t
1 f

t
2X

t

f
u
1 f

u
2X

u

f
r
3

f
s
3

f
u
3 f

u
4

f
p
3 f

p
4f

p
2

f
t
3 f

t
4

Local nesting makes backward selection 
natural and easy:

×

Example:

Cross-validation 
prediction error rate

Removal step0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

over-fitting



42THEME - Bry, Verron ; Rencontres R 2014

5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?

f
p
1X

p

f
r
1X

r
f

r
2

f
s
1 f

s
2X

s

f
t
1 f

t
2X

t

f
u
1 f

u
2X

u

f
r
3

f
s
3

f
u
3 f

u
4

f
p
3 f

p
4f

p
2

f
t
3

Local nesting makes backward selection 
natural and easy:

×

Example:

Cross-validation 
prediction error rate

Removal step0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

over-fitting



43THEME - Bry, Verron ; Rencontres R 2014

5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?
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natural and easy: ×
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?
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5. Backward component selection5. Backward component selection
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5. Backward component selection5. Backward component selection

How THEME works

● How to select the suitable number of components in each group?

Local nesting makes backward selection 
natural and easy:
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1. The main window1. The main window

How to operate the THEME R-software?

Data Input

Output
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SAMPLE_NAME code Tchem_1 Tchem_2 Tchem_3 Tchem_4 Tchem_5 Tchem_6
cig1 6 1.54 0.67 1.85 42.38 3.56 89
cig2 2 0.4 0.92 1.95 42.18 2.31 66
cig3 1 0.56 0.75 1.8 43.23 2.74 123
cig4 5 0.97 0.96 1.83 41.27 2.79 96
cig5 5 0.66 0.85 1.47 41.37 2.29 119
cig6 1 0.89 0.77 2.03 42.2 2.88 142
… … … … … … … …

cig29 4 0.87 0.77 1.89 40.72 2.75 177

2. From raw data to Thematic Model2. From raw data to Thematic Model

How to operate the THEME R-software?

● Data file = ASCII-file with tab separator: data_VDKM0_6groupes.txt
Variables

Obs.
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SAMPLE_NAME code Tchem_1 Tchem_2 Tchem_3 Tchem_4 Tchem_5 Tchem_6
cig1 6 1.54 0.67 1.85 42.38 3.56 89
cig2 2 0.4 0.92 1.95 42.18 2.31 66
cig3 1 0.56 0.75 1.8 43.23 2.74 123
cig4 5 0.97 0.96 1.83 41.27 2.79 96
cig5 5 0.66 0.85 1.47 41.37 2.29 119
cig6 1 0.89 0.77 2.03 42.2 2.88 142
… … … … … … … …

cig29 4 0.87 0.77 1.89 40.72 2.75 177

2. From raw data to Thematic Model2. From raw data to Thematic Model

How to operate the THEME R-software?

● Data file = ASCII-file with tab separator: data_VDKM0_6groupes.txt
Variables

Obs.

X
2

X
1

X
5X

3

X
4

X
6

● Design of the thematic model:

6 themes
2 equations
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SAMPLE_NAME code Tchem_1 Tchem_2 Tchem_3 Tchem_4 Tchem_5 Tchem_6
cig1 6 1.54 0.67 1.85 42.38 3.56 89
cig2 2 0.4 0.92 1.95 42.18 2.31 66
cig3 1 0.56 0.75 1.8 43.23 2.74 123
cig4 5 0.97 0.96 1.83 41.27 2.79 96
cig5 5 0.66 0.85 1.47 41.37 2.29 119
cig6 1 0.89 0.77 2.03 42.2 2.88 142
… … … … … … … …

cig29 4 0.87 0.77 1.89 40.72 2.75 177
TGC cci 1 3 1 3 1 1

2. From raw data to Thematic Model2. From raw data to Thematic Model

How to operate the THEME R-software?

● Data file = ASCII-file with tab separator: data_VDKM0_6groupes.txt
Variables

Obs.

X
2

X
1

X
5X

3

X
4

X
6

● Design of the thematic model:

Thematic
Group Coding
(0 = variable not used)

6 themes
2 equations
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How to operate the THEME R-software?

2. From raw data to Thematic Model2. From raw data to Thematic Model

Data Input
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How to operate the THEME R-software?

2. From raw data to Thematic Model2. From raw data to Thematic Model

Model
design
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2. From raw data to Thematic Model2. From raw data to Thematic Model

How to operate the THEME R-software?

Number of components in groups
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2. From raw data to Thematic Model2. From raw data to Thematic Model

How to operate the THEME R-software?

Role of groups in equation
(explanatory=X, dependent =Y)

Number of components in groups
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2. From raw data to Thematic Model2. From raw data to Thematic Model

How to operate the THEME R-software?

Role of groups in equation
(explanatory=X, dependent =Y)

Number of components in groups

If TGC line in datafile, pre-filled.
Else, interactive design: 
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3. Setting the selection & validation parameters3. Setting the selection & validation parameters

How to operate the THEME R-software?

Component
selection
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3. Setting the selection & validation parameters3. Setting the selection & validation parameters

How to operate the THEME R-software?

Component
selection

Model cross-
validation

Leave 5 observations out of calibration-sample,
and use them for prediction.
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How to operate the THEME R-software?

Structural
strength
parameters

GoF

4. Setting the structural strength and goodness of fit parameters4. Setting the structural strength and goodness of fit parameters
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How to operate the THEME R-software?

5. Launching estimation5. Launching estimation
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How to operate the THEME R-software?

6. Waiting for results6. Waiting for results
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6. Waiting for results6. Waiting for results
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How to operate the THEME R-software?
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How to operate the THEME R-software?

6. Waiting for results6. Waiting for results
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How to operate the THEME R-software?

7. Reaping results7. Reaping results
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How to operate the THEME R-software?

7. Reaping results7. Reaping results

Model-
selection
→
Graphing
variables
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How to operate the THEME R-software?

7. Reaping results7. Reaping results

Graphing
variables
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How to operate the THEME R-software?

7. Reaping results7. Reaping results

Graphing
variables
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How to operate the THEME R-software?

7. Reaping results7. Reaping results

Graphing
observations
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observations
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How to operate the THEME R-software?

7. Reaping results7. Reaping results

Getting ALL
the results
as an object
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How to get the THEME R-software?

Help-files yet to be written...

Soon available on the CRAN

odel

xplorator



83THEME - Bry, Verron ; Rencontres R 2014

THE END

Tank yo, al 

Bry X., Verron T., Redont P. (2010) : Multidimensional Exploratory Analysis of a Structural Model using a
class of generalized covariance criteria, COMPSTAT 2010, Proceedings, Springer.

Bry X., Redont P,. Verron T., Cazes P. (2012) : THEME-SEER: a multidimensional exploratory technique to
analyze a structural model using an extended covariance criterion, Journal of chemometrics, 26, pp 158-169.
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