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CE Dice and ReDice Consortiums

Part I

Computer experiments and (Re)Dice
consortiums

4/ 83



CE Dice and ReDice Consortiums

What are Computer Experiments?

design

experiment +
measurements

meas. output

simulator inputs
x1, x2, . . . , xn

simulator
physical model,

numerical methods

simulator output
fsim(x1), fsim(x2), . . . , fsim(xn)

metamodel inputs
x1, x2, . . . , xn

metamodel
y = g(x)Tβ + Z (x)

metamodel output
ŷ(x), . . .

p
ar

am
. design
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CE Dice and ReDice Consortiums

Who, where?

Automotive

Aerospace

Oil

Nuclear industry

Hydrology, climate
analysis

Carbon sequestration

. . .

See e.g. the books by Fang et al [FLS06] or by Santner et al.
[SWN03]
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CE Dice and ReDice Consortiums

What for? (unclosed list...)

Design of Computer Experiments

→ choose inputs levels in order to best approximate the output

Interpolation/approximation

Global Optimization

Sensitivity Analysis

→ quantify the global effects of inputs on one output

Inversion

→ find regions where fsim remains below some fixed threshold

Risk Assessment

→ e.g. estimate a quantile of an output for random inputs
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CE Dice and ReDice Consortiums

How?

Metamodels come from old and new branches of statistics

Polynomial models

→ response surface

Gaussian Processes and Kriging

→ widely used in spatial statistics or spatio-temporal statistics

Models from Statistical Learning

→ SVM, RBF, Neural Networks, GAM, Mars, PolyMars, ...

Polynomial Chaos
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CE Dice and ReDice Consortiums

Dice and ReDice consortiums

Principle: get together with partners willing to share efforts on
computer experiments

Open problems

Case studies

Ideas, tips

Code

Training

. . .
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CE Dice and ReDice Consortiums

Dice Consortium (2006-2009)

dice.emse.fr

5 industrials (EDF, IRSN, ONERA, Renault,
TOTAL)

4 academics (EMSE, Univ. Aix-Marseille,
Grenoble and Orsay)

3 PhD thesis funded (J. Franco, D.
Ginsbourger, V. Picheny)

Outputs

+30 internal reports, 8 publications

4 R packages released on CRAN

→ DiceDesign, DiceEval, DiceKriging, DiceOptim
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CE Dice and ReDice Consortiums

Dice Consortium (2006-2009)

Industry Academics

EDF R&D

IRSN

Onera

Renault

Total

EMSE
St Étienne
Univ. PC
Aix-Marseille

Univ. PMF
Grenoble

Univ. PSud
Orsay
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CE Dice and ReDice Consortiums

ReDice Consortium (2011-2015)

www.redice-

project.org

5 industrials (EDF, CEA, IFPEN, IRSN,
Renault)

5 academics (EMSE, Univ. Bern, Grenoble,
Toulouse, Nice)

3 PhD thesis funded (M. Binois, C. Chevalier,
F. Zertuche)

Differences with Dice

Publication is enhanced by light property constraints

→ ∅ for methodological articles, 6 month delay for R packages

Training sessions (maths + software)
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CE Dice and ReDice Consortiums

ReDice Consortium (2011-2015)

Industry Academics

EDF R&D

IRSN

Cea

Ifpen

Renault

Univ. Berne

EMSE
St Étienne

IMT Toulouse

Univ. Nice

Univ. PMF
Grenoble

Univ. J. Monnet
St Étienne

Inria
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CE Dice and ReDice Consortiums

Why R?

Existing software in computer experiments: Written in C, Python,
popular matrix languages, . . .

was immediately well-accepted by the Consortiums

Lingua Franca of statistical computing.

Works on major platforms.

Open-source and easy to extend.

Can be used in many modes or fashions.

Huge choice of updated CRAN packages.

→ write new packages and/or enhance existing ones!
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CE Dice and ReDice Consortiums

How new R packages are used

Industrials

To solve real-life problems with new methods.

Often used in a complex computing environment, e.g. Java.

→ Prométhée at IRSN, see later

Academics

For methodological developments.

Case studies, toy examples, benchmarks.

Construction efforts are often valorized by publications.
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CE Dice and ReDice Consortiums

DiceDesign
Construction &

evaluation of designs

DiceOptim
Kriging-based
optimization DiceEval

Validation of
metamodels

DiceKriging
Creation, simulation,

estimation, prediction of
Kriging models

DiceView
Section views of

Kriging predictions

KrigInv
Kriging-based inversion

DKlab [July 2014]
Kriging models for

general kernelsGPareto [Dec. 2014]
Kriging-based

multiobjective optimization

MuFiCokriging
Kriging models for

multi-fidelity simulators

fanovaGraph
Kriging models for

block-additive structures

SAVE
Calibration, validation of

computer models

mistral
Structural reliability
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Part II

Designs for Computer Experiments
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Design specificities for computer experiments

Two main constraints and their consequences.

1 For deterministic simulators, running twice the simulator at
the same location gives the same result

→ Avoid replications

2 A simulator generally models a complex phenomenon with
strongly non-linear behavior

→ Fill the space, in order to avoid missing an area
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Additional constraint:

3 The aforementioned principles should apply in lower
subspaces, since the true dimensionality can be lower.

Example: fsim(x1, x2) = g(x1)

→ It is useless to run the simulator with same x1 locations!

→ The x1 locations should fill the space
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A potentially bad design: How to waste 2/3 of runs!

Only 3 points among 9 are useful if fsim depends only on x1 (or x2).

x1

x 2
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Better designs: Latin hypercubes
R> X <- lhsDesign(n = 9, dimension = 2, seed = 3,

randomized = FALSE)$design

x1

x 2
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Good(?) designs: space-filling Latin hypercubes
R> X0 <- lhsDesign(n = 9, dimension = 2)$design

R> X <- maximinESE_LHS(X0, it=2)$design

x1

x 2
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Evaluation of designs with the radial scanning statistic
The radial scanning stat. tests if the projections onto a straight line
are compatible with uniformity distribution in the whole domain.

Example with a 80-point low discrepancy (Sobol) sequence,
obtained with package randtoolbox.

X1
0.0 0.8 0.0 0.8 0.0 0.8 0.0 0.8

0.
0

0.
0 X2

X3

0.
0

0.
0 X4

X5

0.
0

0.
0 X6

X7

0.
0

0.0 0.8

0.
0

0.0 0.8 0.0 0.8 0.0 0.8

X8
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Top: Radial scanning statistic for the Sobol sequence, indicating
potential problems if fsim(x) = g(x2 − x7).
Bottom: The problem disappears with scrambling.
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DiceDesign features

1 Construction of space-filling designs

Maximin Latin hypercubes
Other designs: Strauss, maximum entropy, WSP, . . .

→ With a special care on optimization procedures

2 Evaluation of designs

Computation of criteria: distances, discrepancies

→ Discrepancies evaluate the distance to uniformity
Graphical tool: radial scanning statistic

→ Detect (oblique) alignments, that may induce a lost of
information
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Part III

Kriging Models and Gaussian Processes
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Kriging models and Gaussian processes for
deterministic simulators

A Kriging model is a Gaussian process (GP) of the form:

Y (x) = β0 + β1g1(x) + · · ·+ βp−1gp−1(x)︸ ︷︷ ︸
m(x)

+ Z (x)

where:

x is the location, typically a vector of length d

m(x) is a deterministic trend, linear comb. of given gi ’s

Z ∼ GP(0, k) where k is the covariance kernel,

k(x, x′; Θ) = cov(Z (x),Z (x′))

→ A deterministic simulator is viewed as a particular path of Y
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x

Figure: Simulated paths of a Kriging model (Matérn kernel)
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Link to geostatistics

The Kriging model originates from geostatistics and the work of D.
Krige [Kri51], followed by G. Matheron [Mat63] and many others.
The problem dimension d is then 2 or 3. Examples:

x is the 3D coordinate in the subsoil, Y (x) is the amount of
gold per volume

x is the 2D location in France, Y (x) the rainfall
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Link to time series

Linear model with AR(1) errors:

Y (t) = β0 + β1x1,t + · · ·+ βp−1xp−1,t + Z (t), t = 1, 2, . . .

where Z (t) = φZ (t − 1) + ε(t),
with ε(t) is a Gaussian white noise.

→ Here, k is an exponential kernel k(t, t ′) = σ2exp(−|t − t ′|/θ)
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Kriging: An interpolator with prediction bounds!

Prediction with Kriging model is obtained by Gaussian vector
conditioning. Given:

A set of locations X = x1, . . . , xn,

A set of observations y = y1, . . . , yn, with y i = (fsim(x i )).

By conditioning on Y (x1) = y1, . . . ,Y (xn) = yn, we obtain a GP:

Whose paths interpolate the observations

→ The mean – Kriging mean – is an interpolator

Whose kernel does not depend on the observations

→ The conditional variance – Kriging variance – does not
depend on y1, . . . , yn
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Kernels

GP can be customized by choosing appropriate covariance kernels,

k(x, x′) = cov(Z (x),Z (x′))

Below some operations to construct new kernels from old:

Product: k1(x, x′)× k2(x, x′)

Tensor product: k1(x1, x′1)× k2(x2, x′2)

Sum, tensor sum

Change of scale: k(g(x), g(x′))

...

→ Usual d-dim. kernels are tensor product of 1D kernels
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Remark about regularity

0 distance x

Exponential

Matern 3/2

Matern 5/2

Gauss

Figure: The regularity of the paths (right) is linked to the regularity of
the covariance kernel (left).
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Extension to noisy observations

In various situations (ex: Neutronics), the simulator is stochastic.

The Kriging model has to be adapted:

ζi = Y (xi ) + εi , i = 1, . . . , n

where Y is a GP and εi are ind. Gaussian r.v. N(0, σ2
i ).

→ We can have several observations at the same location

The aim is to predict Y (x) conditionaly on ζ1, . . . , ζn

→ A filtering problem, also solved by Gaussian conditioning,
which only slightly modifies the Kriging formulas

A.k.a. Gaussian Process Regression.
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Figure: The noisy observations (stars) are obtained from the true
function Y (x) (dotted line) by adding an heterogeneous noise (vertical
bars). Confidence bounds in shaded grey.
The Kriging mean is no more an interpolator.
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Parameter estimation

The trend and covariance parameters are often unknown.

Estimation can be done numerically by MLE or by
Cross-Validation (CV)

→ The analytical gradient of the criteria is supplied to the
optimizers, enhancing their efficiency

The complexity for computing the criteria is O(n3)

→ A problem when n is large, but often not in our context of
time-consuming simulators.
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A 6-dimensional (toy) example

Let us choose the Hartman function, transf. by y 7→ − log(−y).

1 Choose a 80-point maximin LHS design.
R> X0 <- lhsDesign(n = 80, dimension = 6)$design

R> X <- maximinSA_LHS(X0)$design

var 1
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2 Fit a Kriging model to the observations y

R> m <- km(design = data.frame(X), response = y,

+ control = list(trace=F))

→ we use the default formula
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R> m

Call:

km(design = data.frame(X), response = y, control = list(trace = F))

Trend coeff.:

Estimate

(Intercept) 4.4372

Covar. type : matern5_2

Covar. coeff.:

Estimate

theta(X1) 0.6640

theta(X2) 0.9639

theta(X3) 1.9630

theta(X4) 0.7540

theta(X5) 0.6893

theta(X6) 0.5600

Variance estimate: 4.812747
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3 Validation with method plot
R> plot(m)
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4 Predict at new locations, here a 250-point random Latin
hypercube, with method predict. Compare with true values.

R> y.pred <- predict(m, newdata = X.test, type = "UK")

0 2 4 6 8

0
2

4
6

True values

P
re

di
ct

ed
 v

al
ue

s

43/ 83



DiceKriging features

For both deterministic or noisy observations

Accepts a general linear trend

→ With the formula mechanism

Various classes of kernels already implemented

→ Possibility to add one’s kernel (no parameter estimation)

Parameter optimization: MLE or CV, with known trend or
known covariance, classic or genetic optimization, choice of
control parameters, ...

Methods: simulate, predict, plot
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DiceKriging: a shiny demo

Yann Richet has written a shiny animation showing a km fit, see it
at http://glimmer.rstudio.com/richetyann/DiceKriging.
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Part IV

Kriging-based Optimization
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Metamodel-based optimization

The aim is to minimize fsim, with the help of a Kriging model Y .

Wrong way: To minimize the Kriging mean.

→ Highly depends on the quality of the first interpolation!

Right way: To use both the Kriging mean & variance

→ Results in efficient sequential strategies
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Expected Improvement EI

Improvement: What is below the current minimum fmin

I (x) := max(fmin − Y (x), 0)

Expected Improvement: Expectation of the r.v. I (x),
conditionaly on the observations y at X = (x1, . . . , xn):

EI(x) := E
[
I (x)|Y (x1) = y1, . . . ,Y (xn) = yn

]
→ EI(x) has an analytical expression depending on the Kriging
mean and Kriging variance
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EGO: EI-based sequential optimization strategy

Start with an initial Kriging model. Then repeat until a stopping
criterion is reached:

1 Find x? which maximizes EI(x)

2 Evaluate the simulator at x?

3 Update the learning set: X← X ∪ {x?} , y← y ∪ {fsim(x?)}
4 (Possibly) reestimate the Kriging model

→ ”Efficient Global Optimization” (EGO) algorithm of Jones et
al [JSW98]
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A 2D example (Branin function)

Left: Kriging model surface. Right: EI surface.
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Adaptation to a parallel setting

Aim: To give a batch of points at each step

q-EI: Generalizes EI for a batch of q points

→ A batch gives an improvement if at least one is better

Liar strategies: Apply q-times the 1-step EI strategy without
evaluating the simulator

→ Provide a ’reasonable’ value of fsim(x?), typically the
current minimun value
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Example: Usage of DiceOptim at IRSN

promethee.

irsn.org

Prométhée is a software workbench created by
IRSN. It provides a Graphical User Interface for
distributed automated parametric computation on
cluster, workstations, desktop, ... It works with
several simulators: MCNP(X), Moret, Apollo, . . .

Prométhée is based on Java and RServe by S. Urbanek [Urb13].

plays a crucial role in several tasks.

Parameterization of input files.

Metamodels, optimization, sensitivity analysis, ...

Scripting language.

Output management (web).

(Re)Dice packages are widely used.
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Example: Usage of DiceOptim at IRSN

Screenshot of Richet et al [RGRD10]. The ask and tell
mechanism is an original idea arising from package sensitivity
[PIJ13].
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DiceOptim features

1 Kriging-based optimization of deterministic simulators

EI algorithm (EGO)
Parallel EI algorithm: q-points EI, CL heuristics

2 Kriging-based optimization for noisy observations

Noisy EI-like criteria: Expected Quantile Improvement (EQI),
Augmented EI (AEI), Approximate Knowledge Gradient (AKG)
Corresponding sequential optimization strategies

→ For most criteria (EI, EQI, AKG), the analytical gradient is
supplied, enhancing the algorithms efficiency
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Kernels

Part V

Playing with Kernels
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Kernels

Special kernels

DiceKriging allows the user to write her/his own kernel from a
simple R function.

This function can be “inlined” using the inline package [SMS+13].

Example: kernel with an invariance property, e.g. symmetry.
Specificity of computer experiments; usually not a concern in
spatial stat. or geostatistics. Invariant kernels has been a theme of
research in Dice and ReDice consortiums, see Ginsbourger et
al. [GBRC12].
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Kernels

Special kernels

R> k <- function(x1, x2) {

+ 0.5 * exp(-((x1 - x2) / 0.15)^2) +

+ 0.5 * exp(-((1 - x1 - x2) / 0.15)^2)

+ }

R> kmUser <- kmData(y ~ 1, data = df, coef.trend = 0, kernel = k)

The defined kernel k has a ’magical’ property

4 k(x1, x2) = k?(x1, x2) + k?(s.x1, x2) + k?(x1, s.x2) + k?(s.x1, s.x2)

where s is the symmetry x 7→ 1− x and k? is a kernel. The sample
paths become symmetrical.
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Kernels

Special kernels
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Figure: We can use predict, simulate, etc. symmetry automatically
results. Left: prediction from 5 points. Right: conditional simulations
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Kernels

Special kernels

This generalizes to kernels invariant by a finite group G of
transformations

k(x1, x2) ∝
∑

s1, s2∈G
k?(s1.x2, s2.x2)

the dimension d and the kernel k? being arbitrary.

→ G was a group of 2 transformations id and s in previous example.

→ We can play with two axial symmetries in dimension d = 2. Then G
has 4 elements.
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Kernels

Special kernels
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GRF Simulation relying on an invariant kernel

Simulation from a kernel for
dimension d = 2 with two
axial symmetries.
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Kernels

Special kernels

User defined kernels have been made more performant and flexible
in package DKlab (forthcoming).

Parameter estimation by Maximum Likelihood.

Optimization of performance through .Call.
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R packages

Part VI

Practical Considerations
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R packages

Package development

A few hints arising from our experience about R packages
development within the consortiums(s): technical and
non-technical considerations.

67/ 83



R packages

Take time to learn R

Some key R objects must be perfectly known or understood:

→ data.frame 6= matrix, factor, ...

A R function or closure is an amazingly powerful thing!

→ but some practice is needed to make good use of it: dots,

missing formals, scoping, ...

Read again and again the manual Writing R Extensions.

Take time to study the code of good existing packages.

→ Packages written by R core members are of great help
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R packages

Make your life easier

Dramatic productivity gains can be reached by using RStudio
for package development. This is especially true for new
developers and PhD students.

... but some still love emacs/ESS and command lines R CMD
build

Packages such as roxygen2, testthat are of great value.

Use a Version Control System.

It is a real strength to co-work on a variety of platforms, text
editors, graphical devices, ...
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R packages

Package design

Kriging metamodels are not unlike statistical models...

The data/formula interface is very flexible to create
meta-models.

fit <- kmData(y ~ 1, data = myData,

inputnames = c("Temp", "Press"))

But must sometimes be completed.

→ GP models have predictors and inputs. The order of the inputs is

important.

Implementing classical methods make a package easier to use:
summary, coef, predict, simulate, . . .

70/ 83



R packages

Methods

Methods (S3, S4 or R5) enhance code reliability.

Methods can allow users to extend our (Re)Dice packages
from outside.

→ write a new kernel class and a few methods as in nlme, among

which coef and ’coef<-’

But writing methods requires a clear vision of the final code.

→ using S3 temporarily can be a solution

When you find duplicated code, consider writing a method.
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R packages

Documentation

Writing good documentation is difficult and time-consuming

→ documenting S4 methods often generates headaches

Write vignettes or reproducible research documents!

→ Who reads the pdf version of a package’s manual?
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R packages

Compiled code

Writing compiled code is necessary for some computational
CE tasks: kriging, building complex designs, . . .

→ C, C++ or Fortran

Using .C in a package is fairly simple and efficient.

→ however, with much object duplication

Very few people enjoy writing code with .Call.

→ the use of macros can be intimidating

Consider using RCpp! [EF11]

→ there is certainly a good C/C++ programmer in an office next

to your’s.
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R packages

Project management

It is quite difficult for one person to write a package of CRAN
(or higher) quality. This can be time-consuming.

It is necessary to have feedback during the package
development.

Proving theorems and writing good R code is a real challenge
for applied math PhD students!
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R packages

Authorship

Dice and even more ReDice consortiums are very well suited
to support and encourage R package development

→ at the present time, the CRAN policy may discourage some

companies: maintainer and author(s) must be persons, which may

be a problem.

Urge academics/researchers on properly citing R CRAN
packages (and their authors) as they do with research articles.
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R packages

Thank you!

Merci à Kurt Hornik, Uwe Ligges et Brian Ripley, R core members

These slides were produced using Sweave by Friedrich Leisch.
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