(Re)Dice* Packages for Computer Experiments

Olivier Roustant Mines Saint-Étienne

> Ecole Nationale Supérieure des Mines

Yves Deville

statistical consultant

・ロト ・四ト ・ヨト ・ヨト ・ヨ

representing all (Re)Dice* package builders:

M. Binois, C. Chevalier, G. Damblin, D. Dupuy, J. Franco,

D. Ginsbourger, C. Helbert, B. Iooss, V. Picheny, Y. Richet

and all other contributors linked to the (Re)Dice projects

Troisièmes rencontres R, Montpellier June 26-27, 2014.

Special acknowledgements

Some R package contributors also contributed to this talk:

- Mickaël Binois (1D EGO slides)
- David Ginsbourger (3D EGO slides)
- Yann Richet

イロト 不得 トイヨト イヨト 三日

Outline

- Computer Experiments and the (Re)Dice consortiums
- Designs for Computer Experiments
- Kriging Models and Gaussian Processes
- Kriging-based Optimization
- Playing with Kernels
- Practical Considerations

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

・ロト ・四ト ・ヨト ・ヨト

э

Part I

Computer experiments and (Re)Dice consortiums

ヘロト 人間 とくほ とくほ とう

э

What are Computer Experiments?

design

 \mathbf{CE}

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

Who, where?

- Automotive
- Aerospace
- Oil
- Nuclear industry
- Hydrology, climate analysis
- Carbon sequestration

• . . .

See e.g. the books by Fang et al [FLS06] or by Santner et al. [SWN03]

What for? (unclosed list...)

- Design of Computer Experiments
 - \rightarrow choose inputs levels in order to best approximate the output
- Interpolation/approximation
- Global Optimization
- Sensitivity Analysis

 \rightarrow quantify the global effects of inputs on one output

Inversion

 \rightarrow find regions where f_{sim} remains below some fixed threshold

Risk Assessment

 \rightarrow e.g. estimate a quantile of an output for random inputs

イロト 不得 トイヨト イヨト

How?

Metamodels come from old and new branches of statistics

- Polynomial models
 - \rightarrow response surface
- Gaussian Processes and Kriging

 \rightarrow widely used in spatial statistics or spatio-temporal statistics

• Models from Statistical Learning

 \rightarrow SVM, RBF, Neural Networks, GAM, Mars, PolyMars, ...

Polynomial Chaos

Dice and ReDice consortiums

Principle: get together with partners willing to share efforts on computer experiments

- Open problems
- Case studies
- Ideas, tips
- Code
- Training
- . . .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Dice Consortium (2006-2009)

dice.emse.fr

- 5 industrials (EDF, IRSN, ONERA, Renault, TOTAL)
- 4 academics (<u>EMSE</u>, Univ. Aix-Marseille, Grenoble and Orsay)
- 3 PhD thesis funded (J. Franco, D. Ginsbourger, V. Picheny)

Outputs

- +30 internal reports, 8 publications
- 4 R packages released on CRAN
 - \rightarrow DiceDesign, DiceEval, DiceKriging, DiceOptim

э

Dice Consortium (2006-2009)

11/83

ReDice Consortium (2011-2015)

www.rediceproject.org

- 5 industrials (EDF, CEA, IFPEN, IRSN, Renault)
- 5 academics (EMSE, Univ. <u>Bern</u>, Grenoble, Toulouse, Nice)
- 3 PhD thesis funded (M. Binois, C. Chevalier, F. Zertuche)

A D > A P > A B > A B >

Differences with Dice

- Publication is enhanced by light property constraints
 - $\rightarrow \emptyset$ for methodological articles, 6 month delay for R packages
- Training sessions (maths + software)

ReDice Consortium (2011-2015)

13/83

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Why R?

Existing software in computer experiments: Written in C, Python, popular matrix languages, ...

- was immediately well-accepted by the Consortiums
- Lingua Franca of statistical computing.
- Works on major platforms.
- Open-source and easy to extend.
- Can be used in many modes or fashions.
- Huge choice of updated CRAN packages.
- \rightarrow write new packages and/or enhance existing ones!

(日)

How new R packages are used

Industrials

- To solve real-life problems with new methods.
- Often used in a complex computing environment, e.g. Java.
 - \rightarrow *Prométhée* at IRSN, see later

Academics

- For methodological developments.
- Case studies, toy examples, benchmarks.
- Construction efforts are often valorized by publications.

<ロト < 四ト < 三ト < 三ト -

э

• □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ </p>

<ロト < 同ト < 三ト < 三ト

Part II

Designs for Computer Experiments

Design specificities for computer experiments

Two main constraints and their consequences.

 For deterministic simulators, running twice the simulator at the same location gives the same result

 \rightarrow Avoid replications

A simulator generally models a complex phenomenon with strongly non-linear behavior

 \rightarrow Fill the space, in order to avoid missing an area

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

Additional constraint:

The aforementioned principles should apply in lower subspaces, since the *true* dimensionality can be lower.

Example: $f_{sim}(x_1, x_2) = g(x_1)$

- \rightarrow It is useless to run the simulator with same x_1 locations!
- \rightarrow The x_1 locations should fill the space

イロト 不得 トイヨト イヨト 三日

A potentially bad design: How to waste 2/3 of runs!

Only 3 points among 9 are useful if f_{sim} depends only on x_1 (or x_2).

20/83

・ロト ・母ト ・ヨト ・ヨト

A potentially bad design: How to waste 2/3 of runs!

Only 3 points among 9 are useful if f_{sim} depends only on x_1 (or x_2).

Х₁

20/83

Better designs: Latin hypercubes R> X <- lhsDesign(n = 9, dimension = 2, seed = 3, randomized = FALSE)\$design

×

X1

21/83

< □ > < 同 > < 三 > .

Better designs: Latin hypercubes R> X <- lhsDesign(n = 9, dimension = 2, seed = 3, randomized = FALSE)\$design

×

X1

21/83

・ロト ・ 戸 ト ・ ヨ ト ・

Better designs: Latin hypercubes R> X <- lhsDesign(n = 9, dimension = 2, seed = 3, randomized = FALSE)\$design

X₁

21/83

• □ ▶ • □ ▶ • □ ▶

Good(?) designs: space-filling Latin hypercubes
R> X0 <- lhsDesign(n = 9, dimension = 2)\$design
R> X <- maximinESE_LHS(X0, it=2)\$design</pre>

X₁

22/83

Evaluation of designs with the radial scanning statistic

The radial scanning stat. tests if the projections onto a straight line are compatible with uniformity distribution in the whole domain.

Example with a 80-point low discrepancy (Sobol) sequence, obtained with package **randtoolbox**.

Top: Radial scanning statistic for the Sobol sequence, indicating potential problems if $f_{sim}(\mathbf{x}) = g(x_2 - x_7)$. Bottom: The problem disappears with scrambling.

DiceDesign features

Onstruction of space-filling designs

- Maximin Latin hypercubes
- Other designs: Strauss, maximum entropy, WSP, ...

 \rightarrow With a special care on optimization procedures

(日)

DiceDesign features

Construction of space-filling designs

- Maximin Latin hypercubes
- Other designs: Strauss, maximum entropy, WSP, ...

 \rightarrow With a special care on optimization procedures

- e Evaluation of designs
 - Computation of criteria: distances, discrepancies
 - \rightarrow Discrepancies evaluate the distance to uniformity
 - Graphical tool: radial scanning statistic

 \rightarrow Detect (oblique) alignments, that may induce a lost of information

(日)

Part III

Kriging Models and Gaussian Processes

ヘロト ヘ団ト ヘヨト ヘヨト

э
Kriging models and Gaussian processes for deterministic simulators

A Kriging model is a Gaussian process (GP) of the form:

$$Y(\mathbf{x}) = \underbrace{\beta_0 + \beta_1 g_1(\mathbf{x}) + \dots + \beta_{p-1} g_{p-1}(\mathbf{x})}_{m(\mathbf{x})} + Z(\mathbf{x})$$

where:

- **x** is the *location*, typically a vector of length d
- $m(\mathbf{x})$ is a deterministic *trend*, linear comb. of given g_i 's
- $Z \sim GP(0, k)$ where k is the covariance kernel,

$$k(\mathbf{x}, \mathbf{x}'; \Theta) = \operatorname{cov}(Z(\mathbf{x}), Z(\mathbf{x}'))$$

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

 \rightarrow A deterministic simulator is viewed as a particular path of Y

х

Figure: Simulated paths of a Kriging model (Matérn kernel)

Link to geostatistics

The Kriging model originates from geostatistics and the work of D. Krige [Kri51], followed by G. Matheron [Mat63] and many others. The problem dimension d is then 2 or 3. Examples:

- x is the 3D coordinate in the subsoil, Y(x) is the amount of gold per volume
- **x** is the 2D location in France, $Y(\mathbf{x})$ the rainfall

(日)

Link to time series

• Linear model with AR(1) errors:

$$Y(t) = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_{p-1} x_{p-1,t} + Z(t), \quad t = 1, 2, \dots$$

where $Z(t) = \phi Z(t-1) + \varepsilon(t)$, with $\varepsilon(t)$ is a Gaussian white noise.

 \rightarrow Here, k is an exponential kernel $k(t, t') = \sigma^2 \exp(-|t - t'|/\theta)$

イロト 不得 トイヨト イヨト 三日

Kriging: An interpolator with prediction bounds!

Prediction with Kriging model is obtained by *Gaussian vector conditioning*. Given:

- A set of locations $\mathbf{X} = \mathbf{x}^1, \dots, \mathbf{x}^n$,
- A set of observations $\mathbf{y} = y^1, \dots, y^n$, with $y^i = (f_{sim}(x^i))$.

By conditioning on $Y(\mathbf{x}^1) = y^1, \dots, Y(\mathbf{x}^n) = y^n$, we obtain a GP:

• Whose paths interpolate the observations

 \rightarrow The mean – *Kriging mean* – is an interpolator

• Whose kernel does not depend on the observations

 \rightarrow The conditional variance – Kriging variance – does not depend on y^1,\ldots,y^n

æ

Kernels

GP can be customized by choosing appropriate covariance kernels,

$$k(\mathbf{x}, \mathbf{x}') = \operatorname{cov}(Z(\mathbf{x}), Z(\mathbf{x}'))$$

Below some operations to construct new kernels from old:

- Product: $k_1(\mathbf{x}, \mathbf{x}') \times k_2(\mathbf{x}, \mathbf{x}')$
- Tensor product: $k_1(\mathbf{x}_1, \mathbf{x}'_1) \times k_2(\mathbf{x}_2, \mathbf{x}'_2)$
- Sum, tensor sum
- Change of scale: $k(g(\mathbf{x}), g(\mathbf{x}'))$
- ...

 \rightarrow Usual *d*-dim. kernels are tensor product of 1D kernels

イロト 不得 トイヨト イヨト 三日

Extension to noisy observations

In various situations (ex: Neutronics), the simulator is stochastic.

• The Kriging model has to be adapted:

$$\zeta_i = Y(\mathbf{x}^i) + \varepsilon_i, \qquad i = 1, \dots, n$$

where Y is a GP and ε_i are ind. Gaussian r.v. $N(0, \sigma_i^2)$.

 \rightarrow We can have several observations at the same location

The aim is to predict Y(x) conditionaly on ζ₁,..., ζ_n
 → A filtering problem, also solved by Gaussian conditioning,

which only slightly modifies the Kriging formulas

• A.k.a. Gaussian Process Regression.

Figure: The noisy observations (stars) are obtained from the true function $Y(\mathbf{x})$ (dotted line) by adding an heterogeneous noise (vertical bars). Confidence bounds in shaded grey. The Kriging mean is no more an interpolator.

Parameter estimation

The trend and covariance parameters are often unknown.

• Estimation can be done numerically by MLE or by Cross-Validation (CV)

 $\rightarrow\,$ The analytical gradient of the criteria is supplied to the optimizers, enhancing their efficiency

(日)

Parameter estimation

The trend and covariance parameters are often unknown.

• Estimation can be done numerically by MLE or by Cross-Validation (CV)

 $\rightarrow\,$ The analytical gradient of the criteria is supplied to the optimizers, enhancing their efficiency

The complexity for computing the criteria is O(n³)
 → A problem when n is large, but often not in our context of time-consuming simulators.

(日)

A 6-dimensional (toy) example

Let us choose the Hartman function, transf. by $y \mapsto -\log(-y)$.

Choose a 80-point maximin LHS design. R> X0 <- lhsDesign(n = 80, dimension = 6)\$design R> X <- maximinSA_LHS(X0)\$design</p>

\bigcirc Fit a Kriging model to the observations y

```
R> m <- km(design = data.frame(X), response = y,
+ control = list(trace=F))
```

 \rightarrow we use the default formula

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

R> m

```
Call:
km(design = data.frame(X), response = y, control = list(trace = F))
Trend coeff.:
             Estimate
 (Intercept) 4.4372
Covar. type : matern5_2
Covar, coeff.:
             Estimate
  theta(X1) 0.6640
  theta(X2) 0.9639
  theta(X3) 1.9630
  theta(X4) 0.7540
  theta(X5) 0.6893
  theta(X6)
               0.5600
```

Variance estimate: 4.812747

Leave-one-out

Theoretical Quantiles

< 47 >

э

42/83

 Predict at new locations, here a 250-point random Latin hypercube, with method predict. Compare with true values.

R> y.pred <- predict(m, newdata = X.test, type = "UK")</pre>

DiceKriging features

- For both deterministic or noisy observations
- Accepts a general linear trend

 \rightarrow With the formula mechanism

• Various classes of kernels already implemented

 \rightarrow Possibility to add one's kernel (no parameter estimation)

- Parameter optimization: MLE or CV, with known trend or known covariance, classic or genetic optimization, choice of control parameters, ...
- Methods: simulate, predict, plot

(日)

DiceKriging: a shiny demo

Yann Richet has written a shiny animation showing a km fit, see it at http://glimmer.rstudio.com/richetyann/DiceKriging.

Part IV

Kriging-based Optimization

$Metamodel-based\ optimization$

The aim is to minimize f_{sim} , with the help of a Kriging model Y.

- Wrong way: To minimize the Kriging mean.
 → Highly depends on the quality of the first interpolation!
- Right way: To use both the Kriging mean & variance
 → Results in efficient sequential strategies

Expected Improvement EI

• Improvement: What is below the current minimum f_{min}

$$I(\mathbf{x}) := \max(f_{\min} - Y(\mathbf{x}), 0)$$

Expected Improvement: Expectation of the r.v. *I*(**x**), conditionaly on the observations **y** at **X** = (**x**¹,..., **x**ⁿ):

$$\mathsf{EI}(\mathbf{x}) := \mathbb{E}\left[I(\mathbf{x})|Y(\mathbf{x}^1) = y^1, \dots, Y(\mathbf{x}^n) = y^n\right]$$

 \rightarrow El(x) has an analytical expression depending on the Kriging mean and Kriging variance

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

・ロト ・回 ト・目 ト

≣ ▶

・ロト ・日下・ キャット

▲ロ → ▲ 団 → ▲ 目 → ▲ 目 → の へ ⊙

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

- 2

EGO: EI-based sequential optimization strategy

Start with an initial Kriging model. Then repeat until a stopping criterion is reached:

- Find x* which maximizes El(x)
- ② Evaluate the simulator at x*
- $\textbf{0} \quad \text{Update the learning set: } \textbf{X} \leftarrow \textbf{X} \cup \{\textbf{x}^{\star}\} \text{ , } \textbf{y} \leftarrow \textbf{y} \cup \{f_{\min}(\textbf{x}^{\star})\}$
- (Possibly) reestimate the Kriging model

 \rightarrow "Efficient Global Optimization" (EGO) algorithm of Jones et al [JSW98]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

51/83

Left: Kriging model surface. Right: El surface.

Left: Kriging model surface. Right: El surface.

Left: Kriging model surface. Right: El surface.

Left: Kriging model surface. Right: El surface.

Adaptation to a parallel setting

Aim: To give a *batch* of points at each step

- q-EI: Generalizes EI for a batch of *q* points
 → A batch gives an improvement if at least one is better
- Liar strategies: Apply q-times the 1-step El strategy without
 - evaluating the simulator

 \rightarrow Provide a 'reasonable' value of $\mathit{f}_{\rm sim}(\bm{x}^{\star}),$ typically the current minimun value

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲

э

batch 1

Example: Usage of **DiceOptim** at IRSN

promethee. irsn.org

Prométhée is a software workbench created by IRSN. It provides a Graphical User Interface for distributed automated parametric computation on cluster, workstations, desktop, ... It works with several simulators: MCNP(X), Moret, Apollo, ...

イロト 不得 トイヨト イヨト 三日

Prométhée is based on Java and RServe by S. Urbanek [Urb13].

- ඹ plays a crucial role in several tasks.
 - Parameterization of input files.
 - Metamodels, optimization, sensitivity analysis, ...
 - Scripting language.
 - Output management (web).

(Re)Dice packages are widely used.

Example: Usage of **DiceOptim** at IRSN

Screenshot of Richet et al [RGRD10]. The ask and tell mechanism is an original idea arising from package **sensitivity** [PIJ13].

イロト 不得 トイヨト イヨト 三日

DiceOptim features

Kriging-based optimization of deterministic simulators

- El algorithm (EGO)
- Parallel El algorithm: q-points El, CL heuristics

イロト 不得 トイヨト イヨト 三日

DiceOptim features

Kriging-based optimization of deterministic simulators

- El algorithm (EGO)
- Parallel El algorithm: q-points El, CL heuristics
- Ø Kriging-based optimization for noisy observations
 - Noisy El-like criteria: Expected Quantile Improvement (EQI), Augmented El (AEI), Approximate Knowledge Gradient (AKG)
 - Corresponding sequential optimization strategies

(日)

DiceOptim features

Kriging-based optimization of deterministic simulators

- El algorithm (EGO)
- Parallel El algorithm: q-points El, CL heuristics
- Ø Kriging-based optimization for noisy observations
 - Noisy El-like criteria: Expected Quantile Improvement (EQI), Augmented El (AEI), Approximate Knowledge Gradient (AKG)
 - Corresponding sequential optimization strategies

 \rightarrow For most criteria (EI, EQI, AKG), the analytical gradient is supplied, enhancing the algorithms efficiency

(日)

Kernels

Part V

Playing with Kernels

< □ > < □ > < □ > < □ > < □ > < □ > = □

Special kernels

 $\ensuremath{\text{DiceKriging}}$ allows the user to write her/his own kernel from a simple R function.

This function can be "inlined" using the inline package [SMS+13].

Example: kernel with an *invariance property*, e.g. symmetry. Specificity of computer experiments; usually not a concern in spatial stat. or geostatistics. Invariant kernels has been a theme of research in Dice and ReDice consortiums, see Ginsbourger et al. [GBRC12].

イロト 不得 トイヨト イヨト 三日

Special kernels

$$4 k(x_1, x_2) = k^*(x_1, x_2) + k^*(s.x_1, x_2) + k^*(x_1, s.x_2) + k^*(s.x_1, s.x_2)$$

where s is the symmetry $x \mapsto 1 - x$ and k^* is a kernel. The sample paths become symmetrical.

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

KERNELS

Special kernels

Figure: We can use predict, simulate, etc. symmetry automatically results. Left: prediction from 5 points. Right: conditional simulations

• □ ▶ < □ ▶ < □ ▶ < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ < < □ ▶ <

3

Special kernels

This generalizes to kernels invariant by a finite group ${\mathcal{G}}$ of transformations

$$k(\mathbf{x}_1, \mathbf{x}_2) \propto \sum_{s_1, s_2 \in \mathcal{G}} k^{\star}(s_1.\mathbf{x}_2, s_2.\mathbf{x}_2)$$

the dimension d and the kernel k^* being arbitrary.

 $\rightarrow \mathcal{G}$ was a group of 2 transformations id and \emph{s} in previous example.

 \rightarrow We can play with two axial symmetries in dimension d=2. Then ${\cal G}$ has 4 elements.

イロト 不得 トイヨト イヨト 三日

KERNELS

Special kernels

GRF Simulation relying on an invariant kernel

Simulation from a kernel for dimension d = 2 with two axial symmetries.

・ロト ・四ト ・ヨト ・ヨト

э

Special kernels

User defined kernels have been made more performant and flexible in package **DKlab** (forthcoming).

- Parameter estimation by Maximum Likelihood.
- Optimization of performance through .Call.

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

Part VI

Practical Considerations

< □ > < □ > < □ > < □ > < □ > < □ > = □

Package development

A few hints arising from our experience about R packages development within the consortiums(s): technical and non-technical considerations.

イロト 不得 トイヨト イヨト 三日

Take time to learn R

- Some key R objects must be perfectly known or understood: \rightarrow data.frame \neq matrix, factor, ...
- A R function or *closure* is an amazingly powerful thing!
 → but some practice is needed to make good use of it: *dots*, missing formals, scoping, ...
- Read again and again the manual Writing R Extensions.
- Take time to study the code of good existing packages.

 \rightarrow Packages written by R core members are of great help

(日)

Make your life easier

- Dramatic productivity gains can be reached by using RStudio for package development. This is especially true for new developers and PhD students.
- ... but some still love emacs/ESS and command lines R CMD build
- Packages such as roxygen2, testthat are of great value.
- Use a Version Control System.
- It is a real strength to co-work on a variety of platforms, text editors, graphical devices, ...

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

Package design

Kriging metamodels are not unlike statistical models...

• The data/formula interface is very flexible to create meta-models.

• But must sometimes be completed.

 \rightarrow GP models have predictors and inputs. The order of the inputs is important.

• Implementing classical methods make a package easier to use: summary, coef, predict, simulate, ...

(日)

Methods

- Methods (S3, S4 or R5) enhance code reliability.
- Methods can allow users to extend our (Re)Dice packages *from outside*.

 \rightarrow write a new kernel class and a few methods as in nlme, among which coef and 'coef<-'

• But writing methods requires a clear vision of the final code.

 \rightarrow using S3 temporarily can be a solution

• When you find duplicated code, consider writing a method.

イロト 不得 トイヨト イヨト 三日
Documentation

- Writing good documentation is difficult and time-consuming
 → documenting S4 methods often generates headaches
 Write vignettes or reproducible research documents!
 - $\rightarrow~$ Who reads the pdf version of a package's manual?

Compiled code

- Writing compiled code is necessary for some computational CE tasks: *kriging*, building complex designs, ...
 - \rightarrow C, C++ or Fortran
- Using .C in a package is fairly simple and efficient.

 $\rightarrow\,$ however, with much object duplication

- Very few people enjoy writing code with .Call.
 - $\rightarrow~$ the use of macros can be intimidating
- Consider using RCpp! [EF11]

 $\rightarrow \,$ there is certainly a good C/C++ programmer in an office next to your's.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Project management

- It is quite difficult for one person to write a package of CRAN (or higher) quality. This can be time-consuming.
- It is necessary to have feedback during the package development.
- Proving theorems and writing good R code is a real challenge for applied math PhD students!

イロト 不得 トイヨト イヨト 三日

Authorship

• Dice and even more ReDice consortiums are very well suited to support and encourage R package development

 \rightarrow at the present time, the CRAN policy may discourage some companies: maintainer and author(s) must be *persons*, which may be a problem.

 Urge academics/researchers on properly citing R CRAN packages (and their authors) as they do with research articles.

Thank you!

Merci à Kurt Hornik, Uwe Ligges et Brian Ripley, R core members

These slides were produced using Sweave by Friedrich Leisch.

Bibliography I

[CPG14] C. Chevalier, V. Picheny, and D. Ginsbourger, Kriginv: An efficient and user-friendly implementation of batch sequential inversion strategies based on kriging, Computational Statistics & Data Analysis 71 (2014), 1021–1034.

[DCI13] G. Damblin, M. Couplet, and B. looss, Numerical studies of space filling designs: optimization of latin hypercube samples and subprojection properties, Journal of Simulation 7 (2013), 276–289.

- [DGR12] N. Durrande, D. Ginsbourger, and O. Roustant, Additive Covariance kernels for high-dimensional Gaussian Process modeling, Annales de la Faculté des Sciences de Toulouse 21 (2012), no. 3, 481–499.
- [DH11] D. Dupuy and C. Helbert, *DiceEval: Construction and evaluation of metamodels*, 2011, R package version 1.1.
- [DIMW14] G. Defaux, B. Iooss, V. Moutoussamy, and C. Walter, *mistral: Methods in Structural Reliability*, 2014, with contributions from N. Bousquet and P. Lemaitre.

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

Bibliography II

- [DS13] C. Dutang and P. Savicky, *randtoolbox: Generating and testing random numbers*, 2013, R package version 1.13.
- [Edd13] D. Eddelbuettel, *Seamless R and C++ integration with Rcpp*, Springer, New York, 2013, ISBN 978-1-4614-6867-7.
- [EF11] D. Eddelbuettel and R. François, *Rcpp: Seamless R and C++ integration*, Journal of Statistical Software **40** (2011), no. 8, 1–18.
- [FDR⁺14] J. Franco, D. Dupuy, O. Roustant, G. Damblin, and B. looss, *DiceDesign: Designs of Computer Experiments*, 2014, R package version 1.4.
- [FLS06] K. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, Chapman & Hall/CRC, 2006.
- [FMRJ13] J. Fruth, T. Muehlenstaedt, O. Roustant, and M. Jastrow, fanovaGraph: Building Kriging models from FANOVA graphs, 2013, R package version 1.4.4.

Bibliography III

[GBRC12] D. Ginsbourger, X. Bay, O. Roustant, and L. Carraro, Argumentwise invariant kernels for the approximation of invariant functions, Annales de la Faculté des Sciences de Toulouse 21 (2012), no. 3, 501–527.

- [GLC10] D. Ginsbourger, R. Le Riche, and L. Carraro, Computational intelligence in expensive optimization problems, Studies in Evolutionary Learning and Optimization, ch. "Kriging is well-suited to Parallelize Optimization", pp. 131–162, Springer-Verlag, 2010.
- [Gra12] L. Le Gratiet, *MuFiCokriging: Multi-Fidelity Cokriging models*, 2012, R package version 1.2.
- [JSW98] D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization 13 (1998), 455–492.

Bibliography IV

[Kri51] D. G. Krige, A statistical approach to some basic mine valuation problems on the witwatersrand, Journal of the Chemical, Metallurgical and Mining Society of South Africa 52 (1951), no. 6, 119–139.

- [Lei02] F. Leisch, Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis, Compstat 2002 — Proceedings in Computational Statistics (Wolfgang Härdle and Bernd Rönz, eds.), Physica Verlag, Heidelberg, 2002, ISBN 3-7908-1517-9, pp. 575–580.
- [Mat63] G. Matheron, Principles of geostatistics, Economic Geology 58 (1963), 1246–1266.
- [PBD⁺13] J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team, *nlme: Linear and Nonlinear Mixed Effects Models*, 2013, R package version 3.1-113.

イロト 不得 トイヨト イヨト 三日

Bibliography V

[PG14] V. Picheny and D. Ginsbourger, Noisy kriging-based optimization method: a unified implementation within the DiceOptim package, Computational Statistics & Data Analysis 71 (2014), 1035–1053.

- [PGDP13] R. Paulo, G. Garcia-Donato, and J. Palomo, SAVE: R package for the statistical analysis of complex computer models, R package version 0.9.3.7.
- [PIJ13] G. Pujol, B. looss, and A. Janon, sensitivity: Sensitivity Analysis, 2013, R package version 1.7.
- [R C13] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013.
- [RDC12] Y. Richet, Y. Deville, and C. Chevalier, *DiceView: Plot methods for computer experiments design and surrogate*, 2012, R package version 1.3-0.

Bibliography VI

[RGD12] O. Roustant, D. Ginsbourger, and Y. Deville, DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization, Journal of Statistical Software 51 (2012), no. 1, 1–55.

- [RGRD10] Y. Richet, D. Ginsbourger, O. Roustant, and Y. Deville, A grid computing environment for design and analysis of computer experiments, UseR! conference, Gaithersburg, Maryland, USA, 2010.
- [RW06] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learning, the MIT Press, http://www.GaussianProcess.org/gpml, 2006.
- [SMS⁺13] O. Sklyar, D. Murdoch, M. Smith, D. Eddelbuettel, and R. Francois, *inline: Inline C, C++, Fortran function calls from R*, 2013, R package version 0.3.13.

イロト 不得 トイヨト イヨト 三日

Bibliography VII

- [SWMW89] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments, Statistical Science 4 (1989), no. 4, 409–435.
- [SWN03] T. J. Santner, B. J. Williams, and W. Notz, *The design and analysis of computer experiments*, Springer-Verlag, New York, 2003.
- [Urb13] S. Urbanek, *Rserve: Binary r server*, 2013, R package version 1.7-3.
- [WDE11] H. Wickham, P. Danenberg, and M. Eugster, *roxygen2: In-source documentation for r*, 2011, R package version 2.2.2.
- [Wic13] H. Wickham, testthat: Testthat code. tools to make testing fun :), 2013, R package version 0.7.1.